Dynamic allostery controls the peptide sensitivity of the Ly49C natural killer receptor.

J Biol Chem

Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA. Electronic address:

Published: August 2021

AI Article Synopsis

  • NK cells protect the body by targeting cells that lower their class I MHC proteins, especially during viral infections or transformations.
  • The murine NK receptor Ly49C is unique because it shows sensitivity to specific peptides when recognizing the H-2K class I MHC protein.
  • Research indicates that this sensitivity is due to small variations in how well H-2K binds to different peptides, influenced by dynamic allostery and electrostatic interactions between Ly49C and H-2K.

Article Abstract

Using a variety of activating and inhibitory receptors, natural killer (NK) cells protect against disease by eliminating cells that have downregulated class I major histocompatibility complex (MHC) proteins, such as in response to cell transformation or viral infection. The inhibitory murine NK receptor Ly49C specifically recognizes the class I MHC protein H-2K. Unusual among NK receptors, Ly49C exhibits a peptide-dependent sensitivity to H-2K recognition, which has not been explained despite detailed structural studies. To gain further insight into Ly49C peptide sensitivity, we examined Ly49C recognition biochemically and through the lens of dynamic allostery. We found that the peptide sensitivity of Ly49C arises through small differences in H-2K-binding affinity. Although molecular dynamics simulations supported a role for peptide-dependent protein dynamics in producing these differences in binding affinity, calorimetric measurements indicated an enthalpically as opposed to entropically driven process. A quantitative linkage analysis showed that this emerges from peptide-dependent dynamic tuning of electrostatic interactions across the Ly49C-H-2K interface. We propose a model whereby different peptides alter the flexibility of H-2K, which in turn changes the strength of electrostatic interactions across the protein-protein interface. Our results provide a quantitative assessment of how peptides alter Ly49C-binding affinity, suggest the underlying mechanism, and demonstrate peptide-driven allostery at work in class I MHC proteins. Lastly, our model provides a solution for how dynamic allostery could impact binding of some, but not all, class I MHC partners depending on the structural and chemical composition of the interfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8138769PMC
http://dx.doi.org/10.1016/j.jbc.2021.100686DOI Listing

Publication Analysis

Top Keywords

dynamic allostery
12
peptide sensitivity
12
class mhc
12
sensitivity ly49c
8
natural killer
8
mhc proteins
8
electrostatic interactions
8
peptides alter
8
ly49c
6
dynamic
4

Similar Publications

Allosteric regulation of ADAMTS13 (A Disintegrin And Metalloproteinase with ThromboSpondin type-1 motif, member 13) activity involves an interaction between its Spacer (S) and CUB1-2 domains to keep the enzyme in a closed, latent conformation. Monoclonal antibodies (mAb) uncouple the S-CUB interaction to open the ADAMTS13 conformation and thereby disrupt the global enzyme latency. The molecular mechanism behind this mAb-induced allostery remains poorly understood.

View Article and Find Full Text PDF

In the human heart, the binding of cyclic adenosine monophosphate (cAMP), a second messenger, to hyperpolarization and cyclic nucleotide-gated (HCN) regulates the automaticity of pacemaker cells. Recent single-molecule binding studies show that cAMP bound to each subunit of purified tetrameric HCN channels independently, in contrast to findings in cells. To explore the lipid membrane's role in cAMP regulation, we reconstituted purified human HCN channels in various lipid nanodiscs and resolved single molecule ligand-binding dynamics.

View Article and Find Full Text PDF

Reversible protein phosphorylation directs essential cellular processes including cell division, cell growth, cell death, inflammation, and differentiation. Because protein phosphorylation drives diverse diseases, kinases and phosphatases have been targets for drug discovery, with some achieving remarkable clinical success. Most protein kinases are activated by phosphorylation of their activation loops, which shifts the conformational equilibrium of the kinase toward the active state.

View Article and Find Full Text PDF

The rapid identification of protein-protein interactions has been significantly enabled by mass spectrometry (MS) proteomics-based methods, including affinity purification-MS, crosslinking-MS, and proximity-labeling proteomics. While these methods can reveal networks of interacting proteins, they cannot reveal how specific protein-protein interactions alter protein function or cell signaling. For instance, when two proteins interact, there can be emergent signaling processes driven purely by the individual activities of those proteins being co-localized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!