A phylogenetic study of the members of the MAPK and MEK families across Viridiplantae.

PLoS One

Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.

Published: September 2021

Protein phosphorylation is regulated by the activity of enzymes generically known as kinases. One of those kinases is Mitogen-Activated Protein Kinases (MAPK), which operate through a phosphorylation cascade conformed by members from three related protein kinase families namely MAPK kinase kinase (MEKK), MAPK kinase (MEK), and MAPK; these three acts hierarchically. Establishing the evolution of these proteins in the plant kingdom is an interesting but complicated task because the current MAPK, MAPKK, and MAPKKK subfamilies arose from duplications and subsequent sub-functionalization during the early stage of the emergence of Viridiplantae. Here, an in silico genomic analysis was performed on 18 different plant species, which resulted in the identification of 96 genes not previously annotated as components of the MAPK (70) and MEK (26) families. Interestingly, a deeper analysis of the sequences encoded by such genes revealed the existence of putative domains not previously described as signatures of MAPK and MEK kinases. Additionally, our analysis also suggests the presence of conserved activation motifs besides the canonical TEY and TDY domains, which characterize the MAPK family.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8064577PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250584PLOS

Publication Analysis

Top Keywords

mapk mek
12
mapk
9
mek families
8
mapk kinase
8
phylogenetic study
4
study members
4
members mapk
4
mek
4
families viridiplantae
4
viridiplantae protein
4

Similar Publications

Most pancreatic cancer patients are diagnosed at advanced stages, with poor survival rates and drug resistance making pancreatic cancer one of the highest causes of cancer death in the UK. Understanding the underlying mechanism behind its carcinogenesis, metastasis and drug resistance has become an essential task for researchers. We have discovered that a well-established tumour suppressor, EPLIN, has an oncogenic rather than suppressive role in pancreatic cancer.

View Article and Find Full Text PDF

Background: Erdheim-Chester disease (ECD) is a rare form of non-Langerhans cell histiocytosis with diverse clinical manifestations, often associated with mutations in the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. BRAF and KRAS mutations, which are driver mutations of oncogenes, participate in the same signaling pathway (MAPK/ERK pathway) and are usually mutually exclusive. We report a case of ECD with concurrent BRAF and KRAS mutations treated using BRAF and MEK inhibitors.

View Article and Find Full Text PDF

This study establishes mirdametinib as the first MEK inhibitor that can undergo clinical development for psychiatric indications such as post-traumatic stress disorder (PTSD). PTSD is characterized by persistent traumatic memories with limited effective treatment options. A body of evidence suggests that memory storage is dynamic and constantly updated through post-retrieval modification a process termed reconsolidation.

View Article and Find Full Text PDF

Brain arteriovenous malformations (AVMs) are vascular lesions characterized by abnormal connections between parenchymal arteries and veins, bypassing a capillary bed, and forming a nidus. Brain AVMs are consequential as they are prone to rupture and associated with significant morbidity. They can broadly be subdivided into hereditary vs.

View Article and Find Full Text PDF

Redifferentiation Therapies in Thyroid Oncology: Molecular and Clinical Aspects.

J Clin Med

November 2024

Department of Nuclear Medicine, Gruppo Ospedaliero Moncucco, 6900 Lugano, Switzerland.

Since the 1940s, 131-I radioiodine therapy (RIT) has been the primary treatment for metastatic differentiated thyroid cancer (DTC). Approximately half of these patients respond favorably to RIT, achieving partial or complete remission or maintaining long-term stable disease, while the other half develop radioiodine-refractory DTC (RAI-R DTC). The main genomic alteration involved in radioiodine resistance is the activated mitogen-activated protein kinase (MAPK) pathway, which results in the loss of sodium iodide symporters (NIS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!