Angular spectrum (AS) methods enable efficient calculation of wave propagation from one plane to another inside homogeneous media. For wave propagation in heterogeneous media such as biological tissues, AS methods cannot be applied directly. Split-stepping techniques decompose the heterogeneous domain into homogeneous and perturbation parts, and provide a solution for forward wave propagation by propagating the incident wave in both frequency-space and frequency-wavenumber domains. Recently, a split-step hybrid angular spectrum (HAS) method was proposed for plane wave propagation of focused ultrasound beams. In this study, we extend these methods to enable simulation of acoustic pressure field for an arbitrary source distribution, by decomposing the source and reflection spectra into orthogonal propagation direction components, propagating each component separately, and summing all components to get the total field. We show that our method can efficiently simulate the pressure field of arbitrary sources in heterogeneous media. The accuracy of the method was analyzed comparing the resultant pressure field with pseudospectral time domain (PSTD) solution for breast tomography and hemispherical transcranial-focused ultrasound simulation models. Eighty times acceleration was achieved for a 3-D breast simulation model compared to PSTD solution with 0.005 normalized root mean-squared difference (NRMSD) between two solutions. For the hemispherical phased array, aberrations due to skull were accurately calculated in a single simulation run as evidenced by the resultant-focused ultrasound beam simulations, which had 0.001 NRMSD with 40 times acceleration factor compared to the PSTD method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2021.3075367 | DOI Listing |
Sci Bull (Beijing)
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea. Electronic address:
Band topology has emerged as a novel tool for material design across various domains, including photonic and phononic systems, and metamaterials. A prominent model for band topology is the Su-Schrieffer-Heeger (SSH) chain, which reveals topological in-gap states within Bragg-type gaps (BG) formed by periodic modification. Apart from classical BGs, another mechanism for bandgap formation in metamaterials involves strong coupling between local resonances and propagating waves, resulting in a local resonance-induced bandgap (LRG).
View Article and Find Full Text PDFSensors (Basel)
January 2025
University of Zagreb Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia.
This paper introduces a novel method for measuring the dielectric permittivity of materials within the microwave and millimeter wave frequency ranges. The proposed approach, classified as a guided wave transmission system, employs a periodic transmission line structure characterized by mirror/glide symmetry. The dielectric permittivity is deduced by measuring the transmission properties of such structure when presence of the dielectric material breaks the inherent symmetry of the structure and consequently introduce a stopband in propagation characteristic.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Yunnan Earthquake Agency, Kunming 650224, China.
The strong motion records collected in full-scale structures provide the ultimate evidence of how real structures, in situ, respond to earthquakes. This paper presents a novel method for visualization, in three dimensions (3D), of the collective motion by a dense array of sensors in a building. The method is based on one- and two-dimensional biharmonic spline interpolation of the motion recorded by multiple sensors on the same or multiple floors.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Department of Astronautical, Electrical and Energy Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy.
The propagation of interface acoustic waves (IAWs) in 128° YX-LiNbO/SU-8/overcoat structures was theoretically studied and experimentally investigated for different types of overcoat materials and thicknesses of the SU-8 adhesive layer. Three-dimensional finite element method analysis was performed using Comsol Multiphysics software to design an optimized multilayer configuration able to achieve an efficient guiding effect of the IAW at the LiNbO/overcoat interface. Numerical analysis results showed the following: (i) an overcoat faster than the piezoelectric half-space ensures that the wave propagation is confined mainly close to the surface of the LiNbO, although with minimal scattering in the overcoat; (ii) the presence of the SU-8, in addition to performing the essential function of an adhesive layer, can also promote the trapping of the acoustic energy toward the surface of the piezoelectric substrate; and (iii) the electromechanical coupling efficiency of the IAW is very close to that of the surface acoustic wave (SAW) along the bare LiNbO half-space.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
College of Optometry, University of Houston, Houston, TX, USA.
Purpose: To characterize frequency-dependent wave speed dispersion in the human cornea using microliter air-pulse optical coherence elastography (OCE), and to evaluate the applicability of Lamb wave theory for determining corneal elastic modulus using high-frequency symmetric (S0) and anti-symmetric (A0) guided waves in cornea.
Methods: Wave speed dispersion analysis for transient (0.5 ms) microliter air-pulse stimulation was performed in four rabbit eyes ex vivo and compared to air-coupled ultrasound excitation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!