We report the results of an experimental search for ultralight axionlike dark matter in the mass range 162-166 neV. The detection scheme of our Cosmic Axion Spin Precession Experiment is based on a precision measurement of ^{207}Pb solid-state nuclear magnetic resonance in a polarized ferroelectric crystal. Axionlike dark matter can exert an oscillating torque on ^{207}Pb nuclear spins via the electric dipole moment coupling g_{d} or via the gradient coupling g_{aNN}. We calibrate the detector and characterize the excitation spectrum and relaxation parameters of the nuclear spin ensemble with pulsed magnetic resonance measurements in a 4.4 T magnetic field. We sweep the magnetic field near this value and search for axionlike dark matter with Compton frequency within a 1 MHz band centered at 39.65 MHz. Our measurements place the upper bounds |g_{d}|<9.5×10^{-4} GeV^{-2} and |g_{aNN}|<2.8×10^{-1} GeV^{-1} (95% confidence level) in this frequency range. The constraint on g_{d} corresponds to an upper bound of 1.0×10^{-21} e cm on the amplitude of oscillations of the neutron electric dipole moment and 4.3×10^{-6} on the amplitude of oscillations of CP-violating θ parameter of quantum chromodynamics. Our results demonstrate the feasibility of using solid-state nuclear magnetic resonance to search for axionlike dark matter in the neV mass range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.126.141802 | DOI Listing |
Phys Rev Lett
December 2024
Departement de Physique Theorique, Universite de Geneve, 24 quai Ernest Ansermet, 1211 Geneve 4, Switzerland.
We consider resonant wavelike dark matter conversion into low-frequency radio waves in the Earth's ionosphere. Resonant conversion occurs when the dark matter mass and the plasma frequency coincide, defining a range m_{DM}∼10^{-9}-10^{-8} eV where this approach is best suited. Owing to the nonrelativistic nature of dark matter and the typical variational scale of the Earth's ionosphere, the standard linearized approach to computing dark matter conversion is not suitable.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, Kyungpook National University, Daegu 41566, Republic of Korea.
We give for the first time theoretical estimates of unknown rare electron-capture (EC) decay branchings of ^{44}Ti, ^{57}Co, and ^{139}Ce, relevant for searches of (exotic) dark-matter particles. The nuclear-structure calculations have been done exploiting the nuclear shell model with well-established Hamiltonians and an advanced theory of β decay. In the absence of experimental measurements of these rare branches, these estimates are of utmost importance for terrestrial searches of dark-matter particles, such as axionic dark matter in the form of axionlike particles, anapole dark matter, and dark photons in nuclear transitions.
View Article and Find Full Text PDFEur Phys J C Part Fields
November 2024
ETH Zürich, Institute for Particle Physics and Astrophysics, 8093 Zurich, Switzerland.
The NA62 experiment at CERN, configured in beam-dump mode, has searched for dark photon decays in flight to electron-positron pairs using a sample of 1.4×10^{17} protons on dump collected in 2021. No evidence for a dark photon signal is observed.
View Article and Find Full Text PDFPhys Rev Lett
September 2024
LIGO Laboratory, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Axions and axionlike particles are strongly motivated dark-matter candidates that are the subject of many current ground based dark-matter searches. We present first results from the Axion Dark-Matter Birefringent Cavity (ADBC) experiment, which is an optical bow-tie cavity probing the axion-induced birefringence of electromagnetic waves. Our experiment is the first optical axion detector that is tunable and quantum noise limited, making it sensitive to a wide range of axion masses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!