Weighted-Graph-Theoretic Methods for Many-Body Corrections within ONIOM: Smooth AIMD and the Role of High-Order Many-Body Terms.

J Chem Theory Comput

Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States.

Published: May 2021

We present a weighted-graph-theoretic approach to adaptively compute contributions from many-body approximations for smooth and accurate post-Hartree-Fock (pHF) molecular dynamics (AIMD) of highly fluxional chemical systems. This approach is ONIOM-like, where the full system is treated at a computationally feasible quality of treatment (density functional theory (DFT) for the size of systems considered in this publication), which is then improved through a perturbative correction that captures local many-body interactions up to a certain order within a higher level of theory (post-Hartree-Fock in this publication) described through graph-theoretic techniques. Due to the fluxional and dynamical nature of the systems studied here, these graphical representations evolve during dynamics. As a result, energetic "hops" appear as the graphical representation deforms with the evolution of the chemical and physical properties of the system. In this paper, we introduce dynamically weighted, linear combinations of graphs, where the transition between graphical representations is smoothly achieved by considering a range of neighboring graphical representations at a given instant during dynamics. We compare these trajectories with those obtained from a set of trajectories where the range of local many-body interactions considered is increased, sometimes to the maximum available limit, which yields conservative trajectories as the order of interactions is increased. The weighted-graph approach presents improved dynamics trajectories while only using lower-order many-body interaction terms. The methods are compared by computing dynamical properties through time-correlation functions and structural distribution functions. In all cases, the weighted-graph approach provides accurate results at a lower cost.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.0c01287DOI Listing

Publication Analysis

Top Keywords

graphical representations
12
local many-body
8
many-body interactions
8
weighted-graph approach
8
many-body
6
weighted-graph-theoretic methods
4
methods many-body
4
many-body corrections
4
corrections oniom
4
oniom smooth
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!