Porphyrin derivatives are ubiquitous in nature and have important biological roles, such as in light harvesting, oxygen transport, and catalysis. Owing to their intrinsic π-conjugated structure, porphyrin derivatives exhibit characteristic photophysical and electrochemical properties. In biological systems, porphyrin derivatives are associated with various protein molecules through noncovalent interactions. For example, hemoglobin, which is responsible for oxygen transport in most vertebrates, consists of four subunits of a globular protein with an iron porphyrin derivative prosthetic group. Furthermore, noncovalently arranged porphyrin derivatives are the fundamental chromophores in light-harvesting systems for photosynthesis in plants and algae. These biologically important roles originate from the functional versatility of porphyrin derivatives. Specifically, porphyrins are excellent host compounds, forming coordination complexes with various metal ions that adds functionality to the porphyrin unit, such as redox activity and additional ligand binding at the central metal ion. In addition, porphyrins are useful building blocks for functional supramolecular assemblies because of their flat and symmetrical molecular architectures, and their excellent photophysical properties are typically utilized for the fabrication of bioactive functional materials. In this Account, we summarize our endeavors over the past decade to develop functional materials based on porphyrin derivatives using bioinspired approaches. In the first section, we discuss several synthetic receptors that act as artificial allosteric host systems and can be used for the selective detection of various chemicals, such as cyanide, chloride, and amino acids. In the second section, we introduce multiporphyrin arrays as mimics of natural light-harvesting complexes. The active control of energy transfer processes by additional guest binding and the fabrication of organic photovoltaic devices using porphyrin derivatives are also introduced. In the third section, we introduce several types of porphyrin-based supramolecular assemblies. Through noncovalent interactions such as metal-ligand interaction, hydrogen bonding, and π-π interaction, porphyrin derivatives were constructed as supramolecular polymers with formation of fiber or toroidal assembly. In the last section, the application of porphyrin derivatives for biomedical nanodevice fabrication is introduced. Even though porphyrins were good candidates as photosensitizers for photodynamic therapy, they have limitations for biomedical application owing to aggregation in aqueous media. We suggested ionic dendrimer porphyrins and they showed excellent photodynamic therapy (PDT) efficacy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.accounts.1c00114 | DOI Listing |
Biology (Basel)
December 2024
Faculty of Basic Sciences, King Salman International University (KSIU), Ras Sudr 46612, South Sinai, Egypt.
Antimicrobial resistance (AMR) poses a critical global health threat, driving the search for alternative treatments to conventional antibiotics. In this study, the antibacterial properties of honeybee venom (BV) and fungal red dye (RD) were evaluated against three multidrug-resistant bacterial pathogens. Extracts of BV and RD exhibited dose-dependent antibacterial activity against the three tested bacteria, with their strongest effectiveness against (minimum inhibitory concentrations [MIC] = 3.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004 PR China. Electronic address:
Pollution caused by antibiotics, bacteria, and organic dyes presents global public health challenges, posing serious risks to human health. Consequently, new, efficient, fast, and simple photocatalytic systems are urgently required. To this end, 2,7-di(pyridin-4-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NDI)-an electron acceptor-is introduced as a connecting column into a porphyrin-based metal-organic layer (2DTcpp) with excellent photocatalytic activity; this modification yields a three-dimensional pillar-layered metal-organic framework (MOF, 3DNDITcpp) with superior photocatalytic reactive oxygen species (ROS) generation capability.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
Background: Current treatment strategies for hormone-dependent breast cancers, including adjuvant endocrine therapy, often fail due to persistence of breast cancer stem cells (brCSCs), which are significant contributors to tumor recurrence and treatment resistance. Therefore, gaining deeper insights into the molecular regulators driving breast cancer aggressiveness is important. Moreover, given the complexities and expenses involved in developing new pharmacological agents, the strategic repurposing of existing FDA-approved drugs to target these key molecular pathways presents a compelling approach for identifying novel therapeutic interventions aimed at mitigating tumor refractoriness.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
Under conditions that are close to the real cellular environment, the human telomeric single-stranded overhang (∼200 nt) consisting of tens of TTAGGG repeats tends to form higher order structures of multiple G-quadruplex (G4) blocks. On account of the higher biological relevance of higher order G4 structures, ligand compounds binding to higher order G4 are significant for the drug design toward inhibiting telomerase activity. Here, we study the interaction between a cationic porphyrin derivative, 5,10,15,20-tetra{4-[2-(1-methyl-1-piperidinyl)propoxy]phenyl}porphyrin (T4), and a human telomeric G4-dimer (AG(TAG)) in the mimic intracellular molecularly crowded environment (PEG as a crowding agent) and K or Na solution (i.
View Article and Find Full Text PDFCells
January 2025
The Laboratory for the Bioengineering of Tissues (BioTis U1026), National Institute of Health and Medical Research (INSERM), Université de Bordeaux, F-33000 Bordeaux, France.
SCAPs (Stem Cells from Apical Papilla), derived from the apex of forming wisdom teeth, extracted from teenagers for orthodontic reasons, belong to the MSCs (Mesenchymal Stromal Cells) family. They have multipotent differentiation capabilities and are a potentially powerful model for investigating strategies of clinical cell therapies. Since autophagy-a regulated self-eating process-was proposed to be essential in osteogenesis, we investigated its involvement in the SCAP model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!