Smart Nanocages as a Tool for Controlling Supramolecular Aggregation.

J Am Chem Soc

Institut de Science et d' Ingénierie Supramoléculaires (ISIS), University of Strasbourg and CNRS, 8 Alleé Gaspard Monge, 67083 Strasbourg Cedex, France.

Published: May 2021

An important aspect in the field of supramolecular chemistry is the control of the composition and aggregation state of supramolecular polymers and the possibility of stabilizing out-of-equilibrium states. The ability to freeze metastable systems and release them on demand, under spatiotemporal control, to allow their thermodynamic evolution toward the most stable species is a very attractive concept. Such temporal blockage could be realized using stimuli-responsive "boxes" able to trap and redirect supramolecular polymers. In this work, we report the use of a redox responsive nanocontainer, an organosilica nanocage (), for controlling the dynamic self-assembly pathway of supramolecular aggregates of a luminescent platinum compound (). The aggregation of the complexes leads to different photoluminescent properties that allow visualization of the different assemblies and their evolution. We discovered that the nanocontainers can encapsulate kinetically trapped species characterized by an orange emission, preventing their evolution into the thermodynamically stable aggregation state characterized by blue-emitting fibers. Interestingly, the out-of-equilibrium trapped Pt species () can be released on demand by the redox-triggered degradation of , re-establishing their self-assembly toward the thermodynamically stable state. To demonstrate that control of the self-assembly pathway occurs also in complex media, we followed the evolution of the supramolecular aggregates inside living cells, where the destruction of the cages allows the intracellular release of aggregates, followed by the formation of microscopic blue emitting fibers. Our approach highlights the importance of "ondemand" confinement as a tool to temporally stabilize transient species which modulate complex self-assembly pathways in supramolecular polymerization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.1c00444DOI Listing

Publication Analysis

Top Keywords

aggregation state
8
supramolecular polymers
8
self-assembly pathway
8
supramolecular aggregates
8
trapped species
8
thermodynamically stable
8
supramolecular
7
smart nanocages
4
nanocages tool
4
tool controlling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!