Electrochemical aptasensor based on MoC/MoN and gold nanoparticles for determination of chlorpyrifos.

Mikrochim Acta

Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China.

Published: April 2021

Two-dimensional MoC/MoN composites were synthesized by high temperature ball milling and used as support materials for fabricating a chlorpyrifos (CPF) aptasensor. Gold nanoparticles (Au NPs) were electrodeposited on the surface of a MoC/MoN-modified electrode to connect with the ferrocene (Fc) probe via Au-S bonds. The Fc probe can hybridize with the aptamer probe to form a double-stranded structure. The addition of CPF made the double strands melt and the Fc probe approached the surface of the electrode, thereby resulting in amplification of the electrochemical response. The current response of the aptasensor for detecting CPF in solutions linearly varied from 0 to 400 ng mL (with a maximum at 0.98 V vs. Ag/AgCl). The Au NPs/MoC/MoN composites exhibited satisfactory electrochemical behavior due to their excellent electrical conductivity and large surface area. This ultrasensitive aptasensor showed a low limit of detection of 0.036 ng mL. It was applied to determine CPF in real samples with acceptable recoveries from 94.7 to 116.7%, and the relative standard deviation was from 2.57 to 7.08%.Graphical abstract Schematic diagram of the manufacturing process of the aptasensor. Electrochemical aptasensor based on MoC/MoN/Au NP composites show excellent performance in detecting CPF.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-021-04830-0DOI Listing

Publication Analysis

Top Keywords

electrochemical aptasensor
8
aptasensor based
8
gold nanoparticles
8
detecting cpf
8
cpf
5
aptasensor
5
electrochemical
4
based moc/mon
4
moc/mon gold
4
nanoparticles determination
4

Similar Publications

Carbon-based light addressable potential aptasensor based on the synergy of C-MXene@rGO and OPD@NGQDs for low-density lipoprotein detection.

Mikrochim Acta

December 2024

School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.

A novel carbon-based light-addressable potentiometric aptasensor (C-LAPS) was constructed for detection low-density lipoprotein (LDL) in serum. Carboxylated TiC MXene @reduced graphene oxide (C-MXene@rGO) was used as interface and o-phenylenediamine functionalized nitrogen-doped graphene quantum dots (OPD@NGQDs) as the photoelectric conversion element. The photosensitive layers composed of OPD@NGQDs/C-MXene@rGO exhibit superior photoelectric conversion efficiency and excellent biocompatibility, which contribute to an improved response signal.

View Article and Find Full Text PDF

() represents one of the most frequent worldwide causes of morbidity and mortality due to an infectious agent. It is a part of the infamous ESKAPE group, which is highly connected with increased rates of healthcare-associated infections and antimicrobial resistance. can cause a large variety of diseases.

View Article and Find Full Text PDF

An electrochemical aptasensor has been developed specifically for the sensitive and selective determination of ochratoxin A (OTA), one of the most important mycotoxins. The aptasensor utilizes a glassy carbon electrode that has been modified with toluidine blue (TB) encapsulated in a Zn-based metal-organic framework (TB@Zn-MOF). The results demonstrate that in the presence of OTA, the peak current of the differential pulse voltammogram (DPV) related to TB oxidation is notably decreased.

View Article and Find Full Text PDF

An electrochemical aptasensor for the detection of bisphenol A based on triple signal amplification assisted by gold nanoparticles, hemin/G-quadruplex DNAzyme, and exonuclease I.

Mikrochim Acta

December 2024

Key Laboratory for Analytical Science of Food Safety and Biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.

A triple signal amplified electrochemical aptasensor for the detection of bisphenol A (BPA) was developed for the first time based on gold nanoparticles (AuNPs), hemin/G-quadruplex DNAzyme, and exonuclease I (Exo I) assisted amplification strategies. The BPA aptamer (Apt) hybridized with the capture probe (CP) was fixed on the gold electrode (GE) to form the double-stranded DNA (dsDNA) structure. When BPA was present, the Apt was detached from the GE surface by specific recognition between the BPA and Apt, forming BPA-Apt complexes in solution.

View Article and Find Full Text PDF

Recent progress, challenges, and future perspectives of electrochemical biosensing of aflatoxins.

Mikrochim Acta

December 2024

Department of Chemistry, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Andhra Pradesh, 522302, India.

Aflatoxins (AFs), produced by fungi, are highly hazardous and classified as mycotoxins. Controlling their levels is of significant concern. This group consists of 20 fungal metabolites, all structurally derived from difuranocoumarin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!