Controlled Thermal Conversion Strategy to Provide Metal-Organic Framework-Supported Composite Catalysts.

Inorg Chem

Department of Chemistry and Key Laboratory of Advanced Energy Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.

Published: May 2021

Metal-organic framework (MOF)-supported metal/metal compound nanoparticles (NPs) have emerged as a new class of composite catalysts. However, huge challenges prevail in placing such NPs in the MOF pores because of the poor solubility of metal/metal oxides, limited availability of suitable precursors, metastable attribute of given metal ions, and lower thermal stability of MOFs compared to conventional porous materials. Based on the difference between the thermal stability of the precursor and MOFs, we successfully developed a controlled thermal conversion (CTC) method to load cobalt(II) oxide (CoO) NPs into the framework of MOF (MIL-101) to conveniently obtain a composite catalyst, CoO@MIL-101, which is a very rare example of pure CoO NP-loaded composite catalyst that shows excellent catalytic activity in the selective oxidation of benzyl alcohol. This CTC strategy opens up a pathway for impregnating MOF supports with specific NPs, which is further confirmed by preparing the first CuBr@MOF-type composite catalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c00322DOI Listing

Publication Analysis

Top Keywords

composite catalyst
12
controlled thermal
8
thermal conversion
8
composite catalysts
8
thermal stability
8
composite
5
conversion strategy
4
strategy provide
4
provide metal-organic
4
metal-organic framework-supported
4

Similar Publications

Linking D-Band Center Modulation with Rapid Reversible Sulfur Conversion Kinetics via Structural Engineering of VS₂.

Small

December 2024

National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory for Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, China.

The rapid catalytic conversion toward polysulfides is considered to be an advantageous approach to boost the reaction kinetics and inhibit the shuttle effect in lithium-sulfur (Li─S) batteries. However, the prediction of high catalytic activity Li─S catalysts has become challenging given the carelessness in the relationship between important electronic characteristics of catalysts and catalytic activity. Herein, the relationships between the D-band regulation of catalysts with reaction kinetics toward polysulfides are described.

View Article and Find Full Text PDF

Although the Diels-Alder reaction (DA) has garnered significant attention due to its numerous advantages, its long reaction time is a drawback. Herein, we investigated the effects of polarity difference on DA using Layer-by-Layer (LbL) films comprising polycationic polyallylamine hydrochloride and polyanionic poly (styrenesulfonic acid-co-furfuryl methacrylate) [poly (SS--FMA)] as the reaction environment. First, furan composition in poly (SS--FMA) was adjusted to be 19 mol% to achieve good water solubility and layer deposition.

View Article and Find Full Text PDF

The development of efficient artificial photosynthesis systems is crucial for sustainable chemical production, as they mimic natural processes to convert solar energy into chemical products, thereby addressing both energy and environmental challenges. The main bottlenecks in current research include fabricating highly selective, stable, and scalable catalysts, as well as effectively harnessing the full spectrum of light, particularly the low-energy, long-wavelength portion. Herein, we report a novel composite photocatalyst system based on lead halide perovskites embedded in functionalized MOF glass.

View Article and Find Full Text PDF

MXene-based composite photocatalysts for efficient degradation of antibiotics in wastewater.

Sci Rep

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.

View Article and Find Full Text PDF

Versatile electrospun cobalt-doped carbon films for rapid antibiotic degradation.

J Environ Manage

December 2024

College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China. Electronic address:

This study presents a novel approach to water contamination remediation by developing cobalt-doped carbon nanofiber films using electrospun ZIF-67 precursors, aiming to degrade tetracycline hydrochloride (TCH) and other antibiotics. This method uniquely combines the advantages of metal-organic frameworks (MOFs) and electrospinning to enhance catalytic performance, demonstrating significant innovation in environmental catalysis. The research systematically evaluated the impact of various factors on the catalytic activity of carbonized PAN@ZIF-67 films (CPZF), including carbonization temperature, ZIF-67 content, and PMS dosage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!