Air pollution (AP) triggers neuroinflammation and lipoperoxidation involved in physiopathology of several neurodegenerative diseases. Our study aims to investigate the effect of chronic exposure to ambient AP in oxidative stress (OS) parameters and number of neurons and microglial cells of the cortex and striatum. Seventy-two male Wistar rats were distributed in four groups of exposure: control group (FA), exposed throughout life to filtered air; group PA-FA, pre-natal exposed to polluted air until weaning and then to filtered air; group FA-PA, pre-natal exposed to filtered air until weaning and then to polluted air; and group PA, exposed throughout life to polluted air. After 150 days of exposure, the rats were euthanized for biochemical and histological determinations. The malondialdehyde concentration in the cortex and striatum was significantly higher in the PA group. The activity of superoxide dismutase was significantly decreased in the cortex of all groups exposed to AP while activity of catalase was not modified in the cortex or striatum. The total glutathione concentration was lower in the cortex and higher in the striatum of the FA-PA group. The number of neurons or microglia in the striatum did not differ between FA and PA. On the other hand, neurons and microglia cell numbers were significantly higher in the cortex of the FA-PA group. Our findings suggest that the striatum and cortex have dissimilar thresholds to react to AP exposure and different adaptable responses to chronically AP-induced OS. At least for the cortex, changing to a non-polluted ambient early in life was able to avoid and/or reverse the OS, although some alterations in enzymatic antioxidant system may be permanent. As a result, it is important to clarify the effects of AP in the cortical organization and function because of limited capacity of brain tissue to deal with threatening environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-14023-0 | DOI Listing |
J Alzheimers Dis
January 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: White matter hyperintensities (WMH) are prominent neuroimaging markers of cerebral small vessel disease (CSVD) linked to cognitive decline. Nevertheless, the pathophysiological mechanisms underlying WMH remain unclear.
Objective: This study aimed to assess the structural decoupling index (SDI) as a novel metric for quantifying the brain's hierarchical organization associated with WMH in cognitively normal older adults
Methods: We analyzed data from 112 cognitively normal individuals with varying WMH burdens (43 high WMH burden and 69 low WMH burden).
Neurochem Res
January 2025
Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA.
In mice engineered to express enhanced green fluorescent protein (eGFP) under the control of the entire glutamate transporter 1 (GLT1) gene, eGFP is found in all 'adult' cortical astrocytes. However, when 8.3 kilobases of the human GLT1/EAAT2 promoter is used to control expression of tdTomato (tdT), tdT is only found in a subpopulation of these eGFP-expressing astrocytes.
View Article and Find Full Text PDFCogn Affect Behav Neurosci
January 2025
Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA.
Post-traumatic stress and major depressive disorders are associated with "overgeneral" autobiographical memory, or impaired recall of specific life events. Interpersonal trauma exposure, a risk factor for both conditions, may influence how symptomatic trauma-exposed (TE) individuals segment everyday events. The ability to parse experience into units (event segmentation) supports memory.
View Article and Find Full Text PDFJ Behav Addict
January 2025
1Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
Background And Aims: The inclusion of gaming disorder as a new diagnosis in the 11th revision of the International Statistical Classification of Diseases (ICD-11) has caused ongoing debate. This review aimed to summarise the potential neural mechanisms of gaming disorder and provide additional evidence for this debate.
Methods: We conducted a comprehensive literature review of gaming disorder, focusing on studies that investigated its clinical characteristics and neurobiological mechanisms.
Background: Alzheimer's disease (AD), a complex and polygenic disease with a considerable hereditary component (60-80%), is a progressive neurodegenerative disorder characterized by concealed onset, and individuals often have significant cognitive impairment and histopathological changes in the brain before overt clinical diagnosis. However, the correlations between genetic risk for Alzheimer's disease (AD) with comprehensive brain regions at a regional scale are still not well understood. We aim to explore whether these associations vary across different age stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!