AI Article Synopsis

  • Invasive aspergillosis and scedosporiosis are severe fungal infections that present similarly in immunocompromised individuals, but they respond differently to treatments, particularly with susceptibility to azole derivatives and resistance to amphotericin B in Scedosporium apiospermum.
  • Pathogenesis studies using proteomics identified key proteins in A549 cells when infected by Aspergillus fumigatus and S. apiospermum, with distinct changes observed during each infection, indicating different mechanisms of host cell damage and immune response activation.
  • Cytokines were significantly upregulated in infections of both fungi, showing a stronger response to S. apiospermum, which suggests this fungus causes more extensive host immune modulation compared to A. fum

Article Abstract

Invasive aspergillosis and scedosporiosis are life-threatening fungal infections with similar clinical manifestations in immunocompromised patients. Contrarily, Scedosporium apiospermum is susceptible to some azole derivative but often resistant to amphotericin B. Histopathological examination alone cannot diagnose these two fungal species. Pathogenesis studies could contribute to explore candidate protein markers for new diagnosis and treatment methods leading to a decrease in mortality. In the present study, proteomics was conducted to identify significantly altered proteins in A549 cells infected with or without Aspergillus fumigatus and S. apiospermum as measured at initial invasion. Protein validation was performed with immunogold labelling alongside immunohistochemical techniques in infected A549 cells and lungs from murine models. Further, cytokine production was measured, using the Bio-Plex-Multiplex immunoassay. The cytoskeletal proteins HSPA9, PA2G4, VAT1, PSMA2, PEX1, PTGES3, KRT1, KRT9, CLIP1 and CLEC20A were mainly changed during A. fumigatus infection, while the immunologically activated proteins WNT7A, GAPDH and ANXA2 were principally altered during S. apiospermum infection. These proteins are involved in fungal internalisation and structural destruction leading to pulmonary disorders. Interleukin (IL)-21, IL-1α, IL-22, IL-2, IL-8, IL-12, IL-17A, interferon-γ and tumour necrosis factor-α were upregulated in both aspergillosis and scedosporiosis, although more predominately in the latter, in accordance with chitin synthase-1 and matrix metalloproteinase levels. Our results demonstrated that during invasion, A. fumigatus primarily altered host cellular integrity, whereas S. apiospermum chiefly induced and extensively modulated host immune responses.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00248-021-01750-7DOI Listing

Publication Analysis

Top Keywords

infected aspergillus
8
aspergillus fumigatus
8
scedosporium apiospermum
8
aspergillosis scedosporiosis
8
a549 cells
8
apiospermum
5
cytoskeletal alteration
4
alteration early
4
early cellular
4
cellular response
4

Similar Publications

Fungal periprosthetic joint infections (PJIs) are rare but increasingly recognized complications following total joint arthroplasty (TJA). While remains the most common pathogen, non-albicans species and other fungi, such as , have gained prominence. These infections often present with subtle clinical features and affect patients with significant comorbidities or immunosuppression.

View Article and Find Full Text PDF

Ochratoxin A (OTA) is a mycotoxin, a common contaminant of grapes and their derivatives, such as wine, and classified as possible human carcinogen (group 2B) by the International Agency for Research on Cancer (IARC). is the main producer of OTA in grapes. The stability of the molecule and the poor availability of detoxification systems makes the control of in vineyards the main strategy used to reduce OTA contamination risk.

View Article and Find Full Text PDF

Regulation of Histone Acetylation Modification on Biosynthesis of Secondary Metabolites in Fungi.

Int J Mol Sci

December 2024

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

The histone acetylation modification is a conservative post-translational epigenetic regulation in fungi. It includes acetylation and deacetylation at the lysine residues of histone, which are catalyzed by histone acetyltransferase (HAT) and deacetylase (HDAC), respectively. The histone acetylation modification plays crucial roles in fungal growth and development, environmental stress response, secondary metabolite (SM) biosynthesis, and pathogenicity.

View Article and Find Full Text PDF

Plants are frequently challenged by a variety of microorganisms. To protect themselves against harmful invaders, they have evolved highly effective defense mechanisms, including the synthesis of numerous types of antimicrobial peptides (AMPs). Snakins are such compounds, encoded by the (Gibberellic Acid-Stimulated Arabidopsis) gene family, and are involved in the response to biotic and abiotic stress.

View Article and Find Full Text PDF

Pathogenic Aspergillus spp. and Candida spp. in coastal waters from southern Brazil: an one health approach.

Braz J Microbiol

January 2025

Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina (FaMed), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil.

Aspergillus and Candida are ubiquitous fungi included in the group of high priority in the World Health Organization list of fungal pathogens. They are found in various ecosystems and the environmental role in increasing the resistance to antifungals has been shown. Thus, we aimed to determine the occurrence of Aspergillus spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!