Top-down population modelling has gained applied prominence in public health, planning, and sustainability applications at the global scale. These top-down population modelling methods often rely on remote-sensing (RS) derived representation of the built-environment and settlements as key predictive covariates. While these RS-derived data, which are global in extent, have become more advanced and more available, gaps in spatial and temporal coverage remain. These gaps have prompted the interpolation of the built-environment and settlements, but the utility of such interpolated data in further population modelling applications has garnered little research. Thus, our objective was to determine the utility of modelled built-settlement extents in a top-down population modelling application. Here we take modelled global built-settlement extents between 2000 and 2012, created using a spatio-temporal disaggregation of observed settlement growth. We then demonstrate the applied utility of such annually modelled settlement data within the application of annually modelling population, using random forest informed dasymetric disaggregations, across 172 countries and a 13-year period. We demonstrate that the modelled built-settlement data are consistently the 2nd most important covariate in predicting population density, behind annual lights at night, across the globe and across the study period. Further, we demonstrate that this modelled built-settlement data often provides more information than current annually available RS-derived data and last observed built-settlement extents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8041065PMC
http://dx.doi.org/10.1016/j.ssaho.2020.100102DOI Listing

Publication Analysis

Top Keywords

population modelling
16
built-settlement data
12
top-down population
12
modelled built-settlement
12
built-settlement extents
12
data global
8
built-environment settlements
8
rs-derived data
8
period demonstrate
8
demonstrate modelled
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!