Bioinformatic prediction of immunodominant regions in spike protein for early diagnosis of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

PeerJ

National Clinical Research Center for Metabolic Disease, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, and Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

Published: April 2021

Background: To contain the pandemics caused by SARS-CoV-2, early detection approaches with high accuracy and accessibility are critical. Generating an antigen-capture based detection system would be an ideal strategy complementing the current methods based on nucleic acids and antibody detection. The spike protein is found on the outside of virus particles and appropriate for antigen detection.

Methods: In this study, we utilized bioinformatics approaches to explore the immunodominant fragments on spike protein of SARS-CoV-2.

Results: The S1 subunit of spike protein was identified with higher sequence specificity. Three immunodominant fragments, Spike, Spike, and Spike, located at the S1 subunit were finally selected via bioinformatics analysis. The glycosylation sites and high-frequency mutation sites on spike protein were circumvented in the antigen design. All the identified fragments present qualified antigenicity, hydrophilicity, and surface accessibility. A recombinant antigen with a length of 194 amino acids (aa) consisting of the selected immunodominant fragments as well as a universal Th epitope was finally constructed.

Conclusion: The recombinant peptide encoded by the construct contains multiple immunodominant epitopes, which is expected to stimulate a strong immune response in mice and generate qualified antibodies for SARS-CoV-2 detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038641PMC
http://dx.doi.org/10.7717/peerj.11232DOI Listing

Publication Analysis

Top Keywords

spike protein
20
immunodominant fragments
12
spike
8
fragments spike
8
spike spike
8
immunodominant
5
protein
5
bioinformatic prediction
4
prediction immunodominant
4
immunodominant regions
4

Similar Publications

A strong repetitive stimulus can occasionally enhance axonal excitability, leading to the generation of afterdischarge. This afterdischarge outlasts the stimulus period and originates either from the physiological spike initiation site, typically the axon initial segment, or from ectopic sites for spike generation. One of the possible mechanisms underlying the stimulus-induced ectopic afterdischarge is the local depolarization due to accumulated potassium ions surrounding the axonal membranes of the distal portion.

View Article and Find Full Text PDF

Introduction: Coronavirus disease 2019 (COVID-19) is characterized by fever, fatigue, dry cough, dyspnea, mild pneumonia and acute lung injury (ALI), which can lead to acute respiratory distress syndrome (ARDS), and SARS-CoV-2 can accelerate tumor progression. However, the molecular mechanism for the increased mortality in cancer patients infected with COVID-19 is unclear.

Methods: Colony formation and wound healing assays were performed on Huh-7 cells cocultured with syncytia.

View Article and Find Full Text PDF

BTG3 inhibits porcine epidemic diarrhea virus replication by promoting viral S2 protein degradation through the autophagy and proteasome pathways.

Vet Microbiol

January 2025

Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China. Electronic address:

BTG3, which belongs to the BTG/Tob gene family, is involved in various physiological processes. Infection with porcine epidemic diarrhea virus (PEDV), an alphacoronavirus, is associated with high mortality rates among piglets, contributing to major economic losses. This study elucidated a novel mechanism through which BTG3 suppresses PEDV replication.

View Article and Find Full Text PDF

Broad-spectrum affinity chromatography of SARS-CoV-2 and Omicron vaccines from ligand screening to purification.

J Chromatogr A

January 2025

Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China. Electronic address:

Emerging variants of SARS-CoV-2 pose great technological and regulatory challenges to vaccine manufacturing, especially in downstream processing. To address this dilemma, the development of broad-spectrum affinity chromatography for the purification of wild-type SARS-CoV-2 and its variants is crucial. We propose a comprehensive strategy to achieve this goal via the identification of high-affinity peptides by affinity selection of phage display and next-generation sequencing (NGS) and the evaluation of chromatographic performance.

View Article and Find Full Text PDF

Acute SARS-CoV-2 infections are not always diagnosed; hence an unknown proportion of all infections are not documented. SARS-CoV-2 can induce spike and nucleocapsid protein specific IgG antibodies, which can be detected in seroprevalence studies to identify a previous infection. However, with the introduction of vaccines containing the spike protein it is no longer possible to use spike-IgG as a marker of infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!