Background And Objectives: is recognized as an important pathogen responsible for serious infections causing episodes of hospital infection. Carbon nanotubes (CNTs) have recently emerged as superior materials against antibiotic-resistant bacteria. In this study, a new chemical compound was designed in order to combat infections. Subsequently, the effect of this novel carbon nanotube coated with an antibacterial compound on Extensively Drug-Resistant (XDR), Multidrug-Resistant (MDR) and Pan-Drug-Resistance (PDR) strains of was investigated.
Materials And Methods: A total of 122 clinical isolates of were cultured from burn patients and their susceptibility to antibiotics were checked using disk diffusion method and Minimum inhibitory concentration. Antimicrobial effects of the coated carbon nanotube were evaluated on XDR, MDR and PDR isolates of . Cell viability was determined using tetrazolium reduction assay (MTT) on human fibroblast cell line (HDFa). Wound healing processes were assessed by quantitative polymerase chain reaction.
Results: Of the 50 isolates, 38 (76%) were found to be MDR and 12 (24%) were XDR. No PDR strains were detected. Results indicated that the carbon nanotube combined with mercury had antibacterial effect against different species and it also was able to increase the expression of epidermal growth factor, platelet-derived growth factor and vascular endothelial growth factor A mRNA levels which are involved in wound healing.
Conclusion: The engineered carbon nanotube compound can potentially be used for treatment of burn related infections. This can potentially give clinicians a new tool for treating infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8043832 | PMC |
http://dx.doi.org/10.18502/ijm.v13i1.5501 | DOI Listing |
Langmuir
January 2025
Department of Chemistry, Bharathiar University, Coimbatore 641 046, India.
Developing nonprecious metal-based electrocatalysts with exceptional activity and durability for water electrolysis remains a significant challenge. Herein, we report a highly efficient bifunctional electrocatalyst composed of sulfur-doped vanadium metal-organic frameworks (S@V-MOF) integrated with multiwalled carbon nanotubes (MWCNTs) to promote the synergistic effect between S@V-MOF and MWCNTs and modulate the electronic structure of the catalyst, which eventually enhanced its electrocatalytic performance. The S@V-MOF/MWCNT catalyst loaded at the Ni foam electrode exhibits remarkable activity for both the hydrogen evolution reaction (HER) in acidic media and oxygen evolution reaction (OER) in alkaline media, requiring overpotentials of 48 and 227 mV, respectively, to reach a current density of 10 mA cm.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Environment, Northeast Normal University, Changchun 130117, China.
The disinfection of drinking water is essential for eliminating pathogens and preventing waterborne diseases. However, this process generates various disinfection byproducts (DBPs), which toxicological research indicates can have detrimental effects on living organisms. Moreover, the safety of these DBPs has not been sufficiently assessed, underscoring the need for a comprehensive evaluation of their toxic effects and associated health risks.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong.
Helical carbon nanotubes (HCNTs) with different geometrical properties were constructed and incorporated into nanocomposites for the investigation of the anti-crack mechanism. The interfacial mechanical properties of the nanocomposites reinforced with straight carbon nanotubes and various types of HCNTs were investigated through the pullout of HCNTs in the crack propagation using molecular dynamics (MD). The results show that the pullout force of HCNTs is much higher than that of CNTs because the physical interlock between HCNTs and matrices is much stronger than the van der Waals (vdW) interactions between CNTs and matrices.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Faculty of Engineering, University of Kragujevac, SestreJanjić 6, 34000 Kragujevac, Serbia.
Magnesium-based materials, which are known for their light weight and exceptional strength-to-weight ratio, hold immense promise in the biomedical, automotive, aerospace, and military sectors. However, their inherent limitations, including low wear resistance and poor mechanical properties, have driven the development of magnesium-based metal matrix composites (Mg-MMCs). The pivotal role of powder metallurgy (PM) in fabricating Mg-MMCs was explored, enhancing their mechanical and corrosion resistance characteristics.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76318-85356, Iran.
In the current work, the MWCNTs/ZnO nanocomposite was successfully synthesized using simple method. Then, FE-SEM, XRD, and EDX techniques were applied for morphological and structural characterization. Afterward, a sensitive voltammetric sensor based on modification of a screen-printed carbon electrode (SPCE) using MWCNTs/ZnO nanocomposite was developed for the determination of doxorubicin in the presence of dacarbazine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!