A comprehensive study on 2D, 3D and solid tumor environment to explore a multifunctional biogenic nanoconjugate.

Sci Rep

Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Medical College P.O., Thiruvananthapuram, Kerala, 695011, India.

Published: April 2021

AI Article Synopsis

  • The emergence of nanotechnology has revolutionized cancer therapy, particularly through the use of polysaccharide-based nanoparticles for drug delivery and imaging.
  • The study focuses on creating doxorubicin-loaded iron oxide nanoparticles, which improve targeted drug delivery in cancer treatment.
  • These biocompatible nanoconjugates demonstrated effectiveness in killing cancer cells in both 2-D and 3-D cultures, showing potential for reducing tumor size and burden.

Article Abstract

Emergence of nanotechnology created a drastic change in the field of cancer therapy due to their unique features in drug delivery and imaging. Polysaccharide based nanoparticles have received extensive attention in recent years as promising nanoparticle mediated drug delivery systems. Polysaccharides are endorsed with versatile merits including high drug encapsulation efficiency, efficient drug protection against chemical or enzymatic degradation, unique ability to create a controlled release and cellular internalization. In the current study, we have fabricated doxorubicin-loaded carboxymethylated PST001 coated iron oxide nanoparticles (DOX@CM-PST-IONPs) for better management of cancer. CM-PST coated iron oxide nanoparticles co-encapsulated with chemotherapeutic drug doxorubicin, can be utilized for targeted drug delivery. Biocompatible and non-toxic nanoconjugates was found to be effective in both 2-D and 3-D cell culture system with efficient cancer cell internalization. The bench-marked potential of CM-PIONPs to produce reactive oxygen species makes it a noticeable drug delivery system to compact neoplasia. These nanoconjugates can lay concrete on a better way for the elimination of cancer spheroids and tumor burden.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062514PMC
http://dx.doi.org/10.1038/s41598-021-87364-yDOI Listing

Publication Analysis

Top Keywords

drug delivery
16
coated iron
8
iron oxide
8
oxide nanoparticles
8
drug
7
comprehensive study
4
study solid
4
solid tumor
4
tumor environment
4
environment explore
4

Similar Publications

Background: Neuroblastoma, a prevalent extracranial solid tumor in pediatric patients, demonstrates significant clinical heterogeneity, ranging from spontaneous regression to aggressive metastatic disease. Despite advances in treatment, high-risk neuroblastoma remains associated with poor survival. SLC1A5, a key glutamine transporter, plays a dual role in promoting tumor growth and immune modulation.

View Article and Find Full Text PDF

Environment-recognizing DNA nanodevices have proven promising for cellular manipulation and disease treatment, whereas how to sequentially respond to different cellular microenvironments remains a challenge. To this end, here we elaborate a logic-gated intelligent DNA nanorobot (Gi-DR) for the cascade response to inter- and intra-cellular microenvironments, thereby achieving lysosome-targeted cargo delivery for subcellular interference and tumor treatment with enhanced efficacy. Utilizing G-quadruplexes to respond to high-level K+ in cancer cell surrounding, this Gi-DR nanorobot can activate an aptamer-based transmembrane DNA machine that delivers molecular payloads to cellular lysosome.

View Article and Find Full Text PDF

Purpose: Tylvalosin Tartrate (TAT), a new-generation macrolide antibiotic, undergoes significant degradation in the stomach and in vivo rapid elimination upon oral administration, resulting in poor bioavailability. This study developed TAT enteric amorphous pellets by liquid layering (TAT/EAP-LL) with pH-sensitive and burst release characteristics, to enhance drug stability in the stomach and concentration enrichment in the duodenum.

Methods: The drug loading layer, isolation layer and enteric layer were formed on the surface of the blank core pellets.

View Article and Find Full Text PDF

A cross-sectional study on 156 smallholder dairy farms in Rwanda was carried out to assess the association between farm management practices and milk yield and quality. A pre-tested questionnaire was used to collect data on cow characteristics and farm management practices. Milk yield was recorded at household level, milk composition was monitored using a Lactoscan device (Milk Analyzer).

View Article and Find Full Text PDF

Assembly of Genetically Engineered Ionizable Protein Nanocage-based Nanozymes for Intracellular Superoxide Scavenging.

Nat Commun

January 2025

Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China.

Nanozymes play a pivotal role in mitigating excessive oxidative stress, however, determining their specific enzyme-mimicking activities for intracellular free radical scavenging is challenging due to endo-lysosomal entrapment. In this study, we employ a genetic engineering strategy to generate ionizable ferritin nanocages (iFTn), enabling their escape from endo-lysosomes and entry into the cytoplasm. Specifically, ionizable repeated Histidine-Histidine-Glutamic acid (9HE) sequences are genetically incorporated into the outer surface of human heavy chain FTn, followed by the assembly of various chain-like nanostructures via a two-armed polyethylene glycol (PEG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!