Associating natural rewards with predictive environmental cues is crucial for survival. Dopamine (DA) neurons of the ventral tegmental area (VTA) are thought to play a crucial role in this process by encoding reward prediction errors (RPEs) that have been hypothesized to play a role in associative learning. However, it is unclear whether this signal is still necessary after animals have acquired a cue-reward association. In order to investigate this, we trained mice to learn a Pavlovian cue-reward association. After learning, mice show robust anticipatory and consummatory licking behavior. As expected, calcium activity of VTA DA neurons goes up for cue presentation as well as reward delivery. Optogenetic inhibition during the moment of reward delivery disrupts learned behavior, even in the continued presence of reward. This effect is more pronounced over trials and persists on the next training day. Moreover, outside of the task licking behavior and locomotion are unaffected. Similarly to inhibitions during the reward period, we find that inhibiting cue-induced dopamine (DA) signals robustly decreases learned licking behavior, indicating that cue-related DA signals are a potent driver for learned behavior. Overall, we show that inhibition of either of these DA signals directly impairs the expression of learned associative behavior. Thus, continued DA signaling in a learned state is necessary for consolidating Pavlovian associations. Dopamine (DA) neurons of the ventral tegmental area (VTA) have long been suggested to be necessary for animals to associate environmental cues with rewards that they predict. Here, we use time-locked optogenetic inhibition of these neurons to show that the activity of these neurons is directly necessary for performance on a Pavlovian conditioning task, without affecting locomotor per se These findings provide further support for the direct importance of second-by-second DA neuron activity in associative learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197637PMC
http://dx.doi.org/10.1523/JNEUROSCI.2744-20.2021DOI Listing

Publication Analysis

Top Keywords

licking behavior
12
pavlovian associations
8
environmental cues
8
dopamine neurons
8
neurons ventral
8
ventral tegmental
8
tegmental area
8
area vta
8
associative learning
8
cue-reward association
8

Similar Publications

Multiple crosslinked, self-healing, and shape-adaptable hydrogel laden with pain-relieving chitosan@borneol nanoparticles for infected burn wound healing.

Theranostics

January 2025

Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.

Next-generation wound dressings with multiple biological functions hold promise for addressing the complications and pain associated with burn wounds. A hydrogel wound dressing loaded with a pain-relieving drug was developed for treating infected burn wounds. Polyvinyl alcohol chemically grafted with gallic acid (PVA-GA), sodium alginate chemically grafted with 3-aminobenzeneboronic acid (SA-PBA), Zn, and chitosan-coated borneol nanoparticles with anti-inflammatory and pain-relieving activities were combined to afford a nanoparticle-loaded hydrogel with a PVA-GA/Zn/SA-PBA network crosslinked via multiple physicochemical interactions.

View Article and Find Full Text PDF

Conditioned suppression is a useful paradigm for measuring learned avoidance. In most conditioned suppression studies, forward conditioning is used where a cue predicts an aversive stimulus. However, backward conditioning, in which an aversive stimulus predicts a cue, provides unique insights into learned avoidance due to its influence on both conditioned excitation and inhibition.

View Article and Find Full Text PDF

Prairie voles (Microtus ochrogaster) are one of the few mammalian species that are monogamous and engage in the biparental rearing of their offspring. Biparental care impacts the quantity and quality of care the offspring receives. The increased attention by the father may translate to heightened tactile contact the offspring receives through licking and grooming.

View Article and Find Full Text PDF

Temporal distribution of schedule-induced behavior depends on the essential value of the reinforcer.

J Exp Anal Behav

January 2025

Animal Learning and Behavior Laboratory, Departamento de Psicología Básica I, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain.

The development of schedule-induced drinking depends on different variables affecting the food delivered at the end of the interfood interval. There are mixed results concerning the effects of varying magnitude and/or preference of different reinforcers in the development of schedule-induced drinking, with some studies showing higher levels and other studies showing lower levels of drinking. The purpose of this study was to observe how differences in preference for a flavor of equally nutritious food pellets influence the development and maintenance of schedule-induced drinking.

View Article and Find Full Text PDF

The cerebellum is activated by noxious stimuli and pathological pain but its role in noxious information processing remains unknown. Here, we show that in mice, cutaneous noxious electrical stimuli induced noradrenaline (NA) release from locus coeruleus (LC) terminals in the cerebellar cortex. Bergmann glia (BG) accumulated these LC-NA signals by increasing intracellular calcium in an integrative manner ('flares').

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!