Background: Several studies have shown that coenzyme Q10 (CoQ10) can rescue ovarian aging and that ovarian surface epithelium (OSE)-derived ovarian stem cells (OSCs) are useful for treating infertility due to ovarian aging. However, few studies have examined the effect of CoQ10 on OSCs. This study was aimed to investigate whether CoQ10 activates OSCs and recovers ovarian function in a 4-vinylcyclohexene diepoxide (VCD)-induced mouse model of ovarian failure.

Methods: Forty female C57BL/6 mice aged 6 weeks were randomly divided into four groups (n = 10/group): a control group administered saline orally, a CoQ10 group administered 150 mg/kg/day of CoQ10 orally in 1 mL of saline daily for 14 days, a VCD group administered 160 mg/kg/day of VCD i.p. in 2.5 mL of saline/kg for 5 days, and a VCD + CoQ10 group administered VCD i.p. for 5 days injection and CoQ10 (150 mg/kg/day) orally for 14 days. After treatment, follicle counts were evaluated by hematoxylin and eosin (H&E) staining, and ovarian mRNA expressions of Bmp-15, Gdf-9, and c-Kit were examined by quantitative real-time PCR. Serum FSH, AMH, and ROS levels were also measured. Oocyte-like structure counts and the expressions of Oct-4 and MVH were also evaluated after culturing OSE for 3 weeks. In a second experiment, 32 female mice were administered CoQ10 as described above, induced to superovulate using PMSG and hCG, and mated. Numbers of zygotes and embryo development rate were examined.

Results: Postcultured OSE showed significant increases in the numbers of oocyte-like structure and that the expression of Oct-4 and MVH were higher in the VCD + CoQ10 group than in the VCD group (p < 0.05). Numbers of surviving follicles from primordial to antral follicles, numbers of zygotes retrieved and embryo development rate to blastocyst were significantly greater in the VCD + CoQ10 group than in the VCD group (p < 0.01). Serum AMH level and ovarian expressions of Bmp-15, Gdf-9 and c-Kit were also significantly greater in the VCD + CoQ10 group than in the VCD group (p < 0.05). In contrast, serum ROS level was significantly lower in the VCD + CoQ10 group than in the VCD group (p < 0.05).

Conclusion: This study shows that CoQ10 stimulates the differentiation of OSE-derived OSCs and confirms that CoQ10 can reduce ROS levels and improve ovarian function and oocyte quality in mice with VCD-induced ovarian failure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8061220PMC
http://dx.doi.org/10.1186/s12958-021-00736-xDOI Listing

Publication Analysis

Top Keywords

group administered
16
ovarian
11
coenzyme q10
8
ovarian surface
8
ovarian stem
8
stem cells
8
ovarian function
8
function 4-vinylcyclohexene
8
model ovarian
8
ovarian aging
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!