Examination of a recent open-system Ehrenfest dynamics simulation suggests that a vibration-mediate resonance may play a pivotal role in the charge transfer across a donor-acceptor interface in an organic solar cell. Based on this, a concise dissipative two-level electronic system coupled to a molecular vibrational mode is proposed and solved quantum mechanically. It is found that the charge transfer is enhanced substantially when the vibrational energy quanta is equal to the electronic energy loss across the interface. This vibration-mediate resonant charge transfer process is ultrafast, occurring within 100 fs, comparable to experimental findings. The open-system Ehrenfest dynamics simulation of the two-level model is carried out, and similar results are obtained, which confirms further that the earlier open-system Ehrenfest dynamics simulation indeed correctly predicted the occurrence of the resonant charge transfer across the donor-acceptor interface.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0049176DOI Listing

Publication Analysis

Top Keywords

charge transfer
16
resonant charge
12
donor-acceptor interface
12
open-system ehrenfest
12
ehrenfest dynamics
12
dynamics simulation
12
interface organic
8
transfer donor-acceptor
8
charge
5
vibration-mediated resonant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!