Quantum dynamics of Mn in dimethylammonium magnesium formate.

J Chem Phys

CNRS, Aix-Marseille Université, IM2NP (UMR 7334), Institut Matériaux Microélectronique et Nanosciences de Provence, Marseille, France.

Published: April 2021

Dimethylammonium magnesium formate, [(CH)NH][Mg(HCOO)] or DMAMgF, is a model used to study high temperature hybrid perovskite-like dielectrics. This compound displays an order-disorder phase transition at about 260 K. Using multifrequency electron spin resonance in continuous wave and pulsed modes, we herein present the quantum dynamics of the Mn ion probe in DMAMgF. In the high temperature paraelectric phase, we observe a large distribution of the zero field splitting that is attributed to the high local disorder and further supported by density functional theory computations. In the low temperature ferroelastic phase, a single structure phase is detected and shown to contain two magnetic structures. The complex electron paramagnetic resonance signals were identified by means of the Rabi oscillation method combined with the crystal field kernel density estimation.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0046984DOI Listing

Publication Analysis

Top Keywords

quantum dynamics
8
dimethylammonium magnesium
8
magnesium formate
8
high temperature
8
dynamics dimethylammonium
4
formate dimethylammonium
4
formate [chnh][mghcoo]
4
[chnh][mghcoo] dmamgf
4
dmamgf model
4
model study
4

Similar Publications

Recently, exposure to sounds with ultrasound (US) components has been shown to modulate brain activity. However, the effects of US on emotional states remain poorly understood. We previously demonstrated that the olfactory bulbectomized (OBX) rat depression model is suitable for examining the effects of audible sounds on emotionality.

View Article and Find Full Text PDF

Influence of Monomer Size on CO Adsorption and Mechanical Properties in Microporous Cyanate Ester Resins.

Polymers (Basel)

January 2025

Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.

Molecular simulations offer valuable insights into thermosetting polymers' microstructures and interactions with small molecules, aiding in the development of advanced materials. In this study, we design two cyanate resin models featuring monomers of different sizes and employ a previously developed method to generate crosslinked structures. We then analyze their crosslinking processes and physicochemical properties.

View Article and Find Full Text PDF

Fructose-driven metabolic disorders, such as obesity, non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and type 2 diabetes, are significant global health challenges. Ketohexokinase C (KHK-C), a key enzyme in fructose metabolism, is a promising therapeutic target. α-Mangostin, a naturally occurring prenylated xanthone, has been identified as an effective KHK-C inhibitor, prompting exploration of its analogs for enhanced efficacy.

View Article and Find Full Text PDF

Dissolution Mechanism of YbOF in (LiF-CaF) Molten Salt.

Molecules

January 2025

School of Metallurgical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.

The dissolution mechanism of YbOF in a fluoride-containing (LiF-CaF) molten salt is the basis for analyzing the structure of the resulting medium and optimizing the electrolytic preparation of rare-earth Yb alloys. In this study, isothermal saturation was used to analyze solubility changes of YbOF in the (LiF-CaF). system.

View Article and Find Full Text PDF

This study employs quantum chemical computational methods to predict the spectroscopic properties of fluorescent probes 2,6-bis(2-benzimidazolyl)pyridine (BBP) and ()-3-(2-(1-benzo[]imidazol-2-yl)vinyl)-9-(2-(2-methoxyethoxy)ethyl)-9-carbazole (BIMC). Using time-dependent density functional theory (TDDFT), we successfully predicted the fluorescence emission wavelengths of BBP under various protonation states, achieving an average deviation of 6.0% from experimental excitation energies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!