The rocksalt structure of ZnO has a very promising bandgap for optoelectronic applications. Unfortunately, this high-pressure phase is unstable under ambient conditions. This paper presents experimental results for rocksalt-type ZnO/MgO superlattices and theoretical considerations of the critical thickness of MgZnO layers. The correlations between the layer/spacer thickness ratio, elastic strain, chemical composition, and critical thickness are analyzed. The Matthews and Blakeslee model is revisited to find analytic conditions for the critical layer thickness resulting in phase transition. Our analysis shows that due to the decrease in misfit stresses below some critical limit, the growth of multiple quantum wells composed of rocksalt ZnO layers and MgO spacers is possible only for very large layer/spacer thickness ratios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0042415 | DOI Listing |
Dentomaxillofac Radiol
January 2025
Department of Oral and Maxillofacial Radiology, School of Dentistry, Pusan National University, Yangsan, 50612, Korea.
Objectives: This study aimed to develop an automated method for generating clearer, well-aligned panoramic views by creating an optimized three-dimensional (3D) reconstruction zone centered on the teeth. The approach focused on achieving high contrast and clarity in key dental features, including tooth roots, morphology, and periapical lesions, by applying a 3D U-Net deep learning model to generate an arch surface and align the panoramic view.
Methods: This retrospective study analyzed anonymized cone-beam CT (CBCT) scans from 312 patients (mean age 40 years; range 10-78; 41.
Cochrane Database Syst Rev
January 2025
Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK.
Background: Cystic fibrosis is a multisystem disease characterised by the production of thick secretions causing recurrent pulmonary infection, often with unusual bacteria. Intravenous (IV) antibiotics are commonly used in the treatment of acute deteriorations in symptoms (pulmonary exacerbations); however, recently the assumption that exacerbations are due to increases in bacterial burden has been questioned. This is an update of a previously published review.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Neurosurgery, Tokyo Medical and Dental University, Bunkyo-ku, Japan.
Objective: Neurological deterioration after mild traumatic brain injury (TBI) has been recognized as a poor prognostic factor. Early detection of neurological deterioration would allow appropriate monitoring and timely therapeutic interventions to improve patient outcomes. In this study, we developed a machine learning model to predict the occurrence of neurological deterioration after mild TBI using information obtained on admission.
View Article and Find Full Text PDFSci Rep
January 2025
Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany.
We investigate the growth of amorphous MoSi thin films using magnetron co-sputtering and optimize the growth conditions with respect to crystal structure and superconducting properties (e.g., critical temperature [Formula: see text]).
View Article and Find Full Text PDFSurv Ophthalmol
January 2025
Department of Ophthalmology, "Iuliu Hațieganu" University of Medicine and Pharmacy, Victor Babeș 8, 400012, Cluj-Napoca, Romania; Ophthalmology Clinic, Emergency County Hospital, Clinicilor 3-5, 400006, Cluj-Napoca, Romania. Electronic address:
Age-related macular degeneration (AMD) is a leading cause of visual impairment and irreversible blindness worldwide. High-resolution imaging techniques have been pivotal in characterizing the morphological alterations in the retina and in identifying structural biomarkers with prognostic significance. In clinical practice, visual function is primarily assessed through visual acuity testing, which, however, does not completely reflect the functional deficits experienced by patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!