A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mixed-charge pseudo-zwitterionic copolymer brush as broad spectrum antibiofilm coating. | LitMetric

Mixed-charge pseudo-zwitterionic copolymer brush as broad spectrum antibiofilm coating.

Biomaterials

Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore; School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore. Electronic address:

Published: June 2021

Zwitterionic polymers are classical antifouling polymers but they require specialized monomers that have cationic and anionic charges integrated into a single monomer. Herein, we show that pseudo-zwitterionic copolymers synthesized from a mixture of 2 monomers each having a single opposite polarity has excellent antibiofilm efficacy. We have discovered a new mixed-charge copolymer brush (#1-A) synthesized from 2 oppositely charged monomers, the anionic SPM (3-Sulfopropyl methacrylate) and the cationic AMPTMA ((3-Acrylamidopropyl) trimethylammonium chloride), that achieves broad spectrum in vitro antibiofilm effect of greater than 99% reductions against all six Gram-positive and Gram-negative bacteria tested. In the murine subcutaneous wound catheter infection models, the #1-A has good long-term anti-biofilm efficacy against MRSA and Pseudomonas aeruginosa of 3.41 and 3.19 orders respectively, outperforming previous mixed-charge copolymer coatings. We discovered a new method to choose the cationic/anionic pair combination to form the best antibiofilm copolymer brush coating by exploiting the solution polymerization kinetics disparity between the cationic and anionic monomers. We also showed that #1-A is softer and has higher hydration than the classical zwitterionic polymer. This study shows the possibility of achieving potent antibiofilm efficacy by combining readily available opposite singly charged monomers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2021.120794DOI Listing

Publication Analysis

Top Keywords

copolymer brush
12
broad spectrum
8
cationic anionic
8
antibiofilm efficacy
8
mixed-charge copolymer
8
charged monomers
8
antibiofilm
5
monomers
5
mixed-charge pseudo-zwitterionic
4
copolymer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!