Application of flexural and membrane stress analysis to distinguish tensile and compressive moduli of biologic materials.

J Mech Behav Biomed Mater

Kohles Bioengineering,Portland, OR, USA; Division of Biomaterials & Biomechanics, School of Dentistry And Department of Emergency Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Human Physiology, University of Oregon, Eugene, OR, USA. Electronic address:

Published: July 2021

Three-point bending is often used during the mechanical determination of tissue material properties. When taken to failure, the test samples often experience high deformations. The objective of this study was to present beam and plate theories as analytical tools for determining tensile and compressive elastic moduli during the transition from flexure to membrane stress states. Samples of cartilage, a highly flexible connective tissue having differing tensile and compressive moduli, were tested. Three-point bending tests were conducted on auricular (ear) and costal (rib) cartilage harvested from pigs. The influence of span length variation and Poisson's ratio assumptions were statistically assessed. Tensile elastic moduli of the ear (3.886 MPa) and rib (6.131 MPa) were derived from high-deformation bending tests. The functional assessment described here can be applied as a design input approach for tissue reconstruction and tissue engineering, considering both hard and soft tissue applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8137655PMC
http://dx.doi.org/10.1016/j.jmbbm.2021.104474DOI Listing

Publication Analysis

Top Keywords

tensile compressive
12
membrane stress
8
compressive moduli
8
three-point bending
8
elastic moduli
8
bending tests
8
tissue
5
application flexural
4
flexural membrane
4
stress analysis
4

Similar Publications

Long-gauge fiber optic sensors have proven to be valuable tools for structural health monitoring, especially in reinforced concrete (RC) beam structures. While their application in this area has been well-documented, their use in RC columns remains relatively unexplored. This suggests a promising avenue for further research and development.

View Article and Find Full Text PDF

This study addresses the thermal management challenge in battery systems by enhancing phase change material composites with Ni-P and Ni-P-Cu coatings on phase change material/expanded graphite structures. Traditional phase change materials are limited by low thermal conductivity and mechanical stability, which restricts their effectiveness in high-demand applications. Unlike previous studies, this work integrates Ni-P and Ni-P-Cu coatings to significantly improve both the thermal conductivity and mechanical strength of phase change material/expanded graphite composites, filling a crucial gap in battery thermal management solutions.

View Article and Find Full Text PDF

Experimental Study on Mechanical Performance of Single-Side Bonded Carbon Fibre-Reinforced Plywood for Wood-Based Structures.

Materials (Basel)

January 2025

Department of Integrated Design and Tribology Systems, Faculty of Mechanics and Technology, Rzeszów University of Technology, ul. Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland.

In addition to the traditional uses of plywood, such as furniture and construction, it is also widely used in areas that benefit from its special combination of strength and lightness, particularly as a construction material for the production of finishing elements of campervans and yachts. In light of the current need to reduce emissions of climate-damaging gases such as CO, the use of lightweight construction materials is very important. In recent years, hybrid structures made of carbon fibre-reinforced plastics (CFRPs) and metals have attracted much attention in many industries.

View Article and Find Full Text PDF

The present paper investigates the possibility of replacing the traditional L-type corner joint used in chair construction with a 3D printed connector, manufactured using the Fused Filament Fabrication (FFF) method and black PLA as filament. The connector was designed to assemble the legs with seat rails and stretchers, and it was tested under diagonal tensile and compression loads. Its performance was compared to that of the traditional mortise-and-tenon joint.

View Article and Find Full Text PDF

Effect of Chemical Treatment on the Mechanical and Hygroscopic Properties of an Innovative Clay-Sand Composite Reinforced with Fibers.

Materials (Basel)

January 2025

Laboratoire d'Energétique et des Transferts Thermique et Massique (LETTM), Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El-Manar, El Manar, Tunis 2092, Tunisia.

The viability of using fibers as reinforcement material for developing lightweight sustainable non-structural construction materials in compliance with the valorization of local by-products has been investigated in this work. This study aims to investigate the effect of the chemical treatment of fibers on the mechanical and hygric properties of bio-sourced clay-sand- fiber composite. This lightweight specimen has been produced from a mixture of 60% natural clay and 40% sand by mass, as a matrix, and reinforced with different amounts of Juncus fibers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!