Hypothesis: Distinguishing substituted aromatic isomers is a challenging task because of the great similarity of their physicochemical properties. Considering xylene isomers have drastically different geometrical shapes, we predict this would show great impact on the self-assembling behavior of various xylene isomer@cyclodextrin inclusion complex.
Experiments: Through host-guest crystalline self-assembly, among three isomers, only ortho-xylene is capable to form hydrogels with α-cyclodextrin. ROESY NMR, molecular simulations and circular dichroism spectra suggest that the ortho selectivity comes from the difference in the conformation of host-guest building block. The larger volume, and steric hinderance of the ortho isomer make it most possibly decrease their tendency to adopt more mobile orientations in cyclodextrin-based complex as meta and para isomers do, resulting in gel formation.
Findings: Herein, we report a novel, facile and environmentally-friendly protocol on the recognition of ortho benzene isomers using α-cyclodextrin through host-guest crystalline self-assembly. Visual recognition of ortho-xylene is achieved through amplifying the structural difference of xylene isomers at molecular scale into macroscopic scale. We believe this work unveils subtle rules to control macroscopic assemblies at the molecular level and highlights the potential of using macrocyclic compounds to improve the quality and reduce the energy bill for separation in petrochemical industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.03.024 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
The development of well-defined three-dimensional supramolecular polymers presents significant challenges, particularly in achieving crystalline state structures. This study addresses this challenge by presenting the construction of a crystalline three-dimensional supramolecular polymer through the self-assembly of clamparene () and a naphthalene diimide derivative () in the solid state. The hierarchical self-assembly progresses from one-dimensional linear supramolecular polymers to two-dimensional supramolecular polymers and ultimately to a crystalline three-dimensional supramolecular polymer.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Tokyo Colledge, UT Institutes for Advanced Study, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan.
This study reports a method for enhancing the functions and properties of traditional organic macrocyclic hosts by fully encapsulating them within a large ML cage to form host-in-host complexes. Within the cage host, the macrocyclic organic hosts with electron-rich aromatic rings, such as cyclotriveratrylene and calix[8]arene, adopt specific orientations enhancing their inherent molecular recognition abilities. Due to the high crystallinity of the ML cage, the guest encapsulation behavior of the host-in-host complexes can be observed by X-ray structural analysis.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
Acc Chem Res
December 2024
International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
ConspectusEnzymes are highly efficient and selective catalysts that operate under mild conditions, making them invaluable for various chemical transformations. However, their limitations, such as instability and high cost, call for advancements in enzyme immobilization and the development of suitable host materials. Metal-organic frameworks (MOFs), characterized by high porosity, crystallinity, and tunability, are promising candidates for enzyme encapsulation.
View Article and Find Full Text PDFDalton Trans
November 2024
TerraPower LLC, Bellevue, WA 98008, USA.
This study explores the vapochromic and vapoluminescent behaviors of [Pt(tpy)Cl]PF host molecules (tpy = 2,2':6',2''-terpyridine) under acetonitrile (CHCN) vapor guest, challenging the conventional view that these phenomena arise solely from direct host-guest interactions. Our findings reveal a cooperative mechanism where mechanochromic surface perturbations prime the Pt(II) host for guest incorporation, leading to initial color and luminescence changes prior to significant structural alterations. While the color transition between the yellow [Pt(tpy)Cl]PF form and the red/orange [Pt(tpy)Cl]PF·CHCN form is reversible, repeated vapor cycling induces a loss of crystallinity, as indicated by diffraction peak broadening and emission shifts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!