Visual recognition of ortho-xylene based on its host-guest crystalline self-assembly with α-cyclodextrin.

J Colloid Interface Sci

Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China. Electronic address:

Published: September 2021

Hypothesis: Distinguishing substituted aromatic isomers is a challenging task because of the great similarity of their physicochemical properties. Considering xylene isomers have drastically different geometrical shapes, we predict this would show great impact on the self-assembling behavior of various xylene isomer@cyclodextrin inclusion complex.

Experiments: Through host-guest crystalline self-assembly, among three isomers, only ortho-xylene is capable to form hydrogels with α-cyclodextrin. ROESY NMR, molecular simulations and circular dichroism spectra suggest that the ortho selectivity comes from the difference in the conformation of host-guest building block. The larger volume, and steric hinderance of the ortho isomer make it most possibly decrease their tendency to adopt more mobile orientations in cyclodextrin-based complex as meta and para isomers do, resulting in gel formation.

Findings: Herein, we report a novel, facile and environmentally-friendly protocol on the recognition of ortho benzene isomers using α-cyclodextrin through host-guest crystalline self-assembly. Visual recognition of ortho-xylene is achieved through amplifying the structural difference of xylene isomers at molecular scale into macroscopic scale. We believe this work unveils subtle rules to control macroscopic assemblies at the molecular level and highlights the potential of using macrocyclic compounds to improve the quality and reduce the energy bill for separation in petrochemical industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.03.024DOI Listing

Publication Analysis

Top Keywords

host-guest crystalline
12
crystalline self-assembly
12
visual recognition
8
recognition ortho-xylene
8
xylene isomers
8
isomers
6
ortho-xylene based
4
host-guest
4
based host-guest
4
self-assembly α-cyclodextrin
4

Similar Publications

A Crystalline 3D Supramolecular Polymer Constructed by Clamparene-Based Controllable Self-Assembly and Its Application in Photothermal Conversion.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.

The development of well-defined three-dimensional supramolecular polymers presents significant challenges, particularly in achieving crystalline state structures. This study addresses this challenge by presenting the construction of a crystalline three-dimensional supramolecular polymer through the self-assembly of clamparene () and a naphthalene diimide derivative () in the solid state. The hierarchical self-assembly progresses from one-dimensional linear supramolecular polymers to two-dimensional supramolecular polymers and ultimately to a crystalline three-dimensional supramolecular polymer.

View Article and Find Full Text PDF

Host-in-Host Complexation: Activating Classical Hosts through Complete Encapsulation within an ML Coordination Cage.

Angew Chem Int Ed Engl

December 2024

Tokyo Colledge, UT Institutes for Advanced Study, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan.

This study reports a method for enhancing the functions and properties of traditional organic macrocyclic hosts by fully encapsulating them within a large ML cage to form host-in-host complexes. Within the cage host, the macrocyclic organic hosts with electron-rich aromatic rings, such as cyclotriveratrylene and calix[8]arene, adopt specific orientations enhancing their inherent molecular recognition abilities. Due to the high crystallinity of the ML cage, the guest encapsulation behavior of the host-in-host complexes can be observed by X-ray structural analysis.

View Article and Find Full Text PDF

Single-Crystal Dynamic Covalent Organic Frameworks for Adaptive Guest Alignments.

J Am Chem Soc

December 2024

School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.

Article Synopsis
  • * A novel diffusion gradient transimination protocol was developed to grow COF-300 single crystals, allowing scientists to conduct high-resolution X-ray diffraction to observe structural changes and intermediate phases.
  • * The findings highlight that the structural transformations in COFs are precise and follow defined pathways, similar to protein folding, which can lead to the development of advanced materials for studying liquid structures.
View Article and Find Full Text PDF

Enhancing Biocatalysis: Metal-Organic Frameworks as Multifunctional Enzyme Hosts.

Acc Chem Res

December 2024

International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.

ConspectusEnzymes are highly efficient and selective catalysts that operate under mild conditions, making them invaluable for various chemical transformations. However, their limitations, such as instability and high cost, call for advancements in enzyme immobilization and the development of suitable host materials. Metal-organic frameworks (MOFs), characterized by high porosity, crystallinity, and tunability, are promising candidates for enzyme encapsulation.

View Article and Find Full Text PDF

This study explores the vapochromic and vapoluminescent behaviors of [Pt(tpy)Cl]PF host molecules (tpy = 2,2':6',2''-terpyridine) under acetonitrile (CHCN) vapor guest, challenging the conventional view that these phenomena arise solely from direct host-guest interactions. Our findings reveal a cooperative mechanism where mechanochromic surface perturbations prime the Pt(II) host for guest incorporation, leading to initial color and luminescence changes prior to significant structural alterations. While the color transition between the yellow [Pt(tpy)Cl]PF form and the red/orange [Pt(tpy)Cl]PF·CHCN form is reversible, repeated vapor cycling induces a loss of crystallinity, as indicated by diffraction peak broadening and emission shifts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!