Age-related differences in network structure and dynamic synchrony of cognitive control.

Neuroimage

Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, United States; F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD 21287, United States; Department of Neuroscience, Johns Hopkins University, MD 21287, United States.

Published: August 2021

AI Article Synopsis

Article Abstract

Cognitive trajectories vary greatly across older individuals, and the neural mechanisms underlying these differences remain poorly understood. Here, we investigate the cognitive variability in older adults by linking the influence of white matter microstructure on the task-related organization of fast and effective communications between brain regions. Using diffusion tensor imaging and electroencephalography, we show that individual differences in white matter network organization are associated with network clustering and efficiency in the alpha and high-gamma bands, and that functional network dynamics partly explain individual differences in cognitive control performance in older adults. We show that older individuals with high versus low structural network clustering differ in task-related network dynamics and cognitive performance. These findings were corroborated by investigating magnetoencephalography networks in an independent dataset. This multimodal (fMRI and biological markers) brain connectivity framework of individual differences provides a holistic account of how differences in white matter microstructure underlie age-related variability in dynamic network organization and cognitive performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2021.118070DOI Listing

Publication Analysis

Top Keywords

white matter
12
individual differences
12
cognitive control
8
older individuals
8
older adults
8
matter microstructure
8
differences white
8
network organization
8
network clustering
8
network dynamics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!