Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Recent studies in cancer biology suggest that metabolic glucose reprogramming is a potential target for cancer treatment. However, little is known about drug intervention in the glucose metabolism of cancer stem cells (CSCs) and its related underlying mechanisms.
Methods: The crude realgar powder was Nano-grinded to meets the requirements of Nano-pharmaceutical preparations, and Nano-realgar solution (NRS) was prepared for subsequent experiments. Isolation and characterization of lung cancer stem cells (LCSCs) was performed by magnetic cell sorting (MACS) and immunocytochemistry, respectively. Cell viability and intracellular glucose concentration were detected by MTT assay and glucose oxidase (GOD) kit. Protein expressions related to metabolic reprogramming was detected by ELISA assay. Determination of the expression of HIF-1α and PI3K/Akt/mTOR pathways was carried out by RT-PCR and western blotting analysis. A subcutaneous tumor model in BALB/c-nu mice was successfully established to evaluate the effects of Nano-realgar on tumor growth and histological structure, and the expression of HIF-1α in tumor tissues was measured by immunofluorescence.
Results: Nano-realgar inhibits cell viability and induces glucose metabolism in LCSCs, and inhibits protein expression related to metabolic reprogramming in a time- and dose-dependent manner. Nano-realgar downregulated the expression of HIF-1α and PI3K/Akt/mTOR pathways in vitro and in vivo. Nano-realgar inhibits tumor growth and changes the histological structure of tumors through in vivo experiments and consequently inhibits the constitutive activation of HIF-1α signaling.
Conclusions: These results reveal that Nano-realgar inhibits tumor growth in vitro and in vivo by repressing metabolic reprogramming. This inhibitory effect potentially related to the downregulation HIF-1α expression via PI3K/Akt/mTOR pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2021.145666 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!