Glioblastoma is the most malignant tumor of the brain associated with poor prognosis and outcome, and hence there is an urgent need to develop novel treatments for glioblastoma. In this study, we focused on hyaluronan binding protein (HYBID, as known as CEMIP/KIAA1199), a protein involved in hyaluronan depolymerization in chondrocytes and synoviocytes. We previously reported that Hybid-deficient (KO) mice show accumulation of hyaluronan in the brain, and memory impairment. To elucidate the role of HYBID in glioblastoma pathogenesis, we knocked down HYBID in human glioblastoma cells using siRNAs and developed a murine orthotopic xenograft model in the Hybid KO mice. Downregulation of HYBID in glioblastoma cells resulted in inhibition of cell proliferation and migration, and increased cell death. The growth of glioblastoma cells implanted in the mouse brain was suppressed in Hybid KO mice compared to that in the wild-type mice. Interestingly, infiltration of macrophages in the glioblastoma tissue was decreased in Hybid KO mice. Using intraperitoneal macrophages derived from Hybid KO mice and glioma cell supernatants, we examined the role of HYBID in macrophages in the tumor environment. We showed that HYBID contributes to macrophage migration and the release of pro-tumor factors. Moreover, we revealed that HYBID can be a poor prognostic factor in glioma patients by bioinformatics approaches. Our study provides data to support that HYBID expressed by both glioblastoma cells and tumor-associated macrophages may contribute to glioblastoma progression and suggests that HYBID may be a potential target for therapy that focuses on the tumor microenvironment of glioblastoma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2021.147490DOI Listing

Publication Analysis

Top Keywords

glioblastoma cells
16
hybid mice
16
hybid
14
glioblastoma
11
cells tumor-associated
8
tumor-associated macrophages
8
macrophages contribute
8
contribute glioblastoma
8
growth glioblastoma
8
role hybid
8

Similar Publications

IDO1 inhibits ferroptosis by regulating FTO-mediated m6A methylation and SLC7A11 mRNA stability during glioblastoma progression.

Cell Death Discov

January 2025

State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China.

Indoleamine 2, 3-dioxygenase 1 (IDO1) has been recognized as an enzyme involved in tryptophan catabolism with immunosuppressive ability. This study determined to investigate the impact of IDO1 on glioblastoma multiforme (GBM) cells. Here, we showed that the expression of IDO1 was markedly increased in patients with glioma and associated with GBM progression.

View Article and Find Full Text PDF

Stereotactic injection of murine brain tumor cells for neuro-oncology studies.

Methods Cell Biol

January 2025

Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States. Electronic address:

Glioblastomas (GBMs) are the most common and aggressive brain tumors, with a poor prognosis. Effective preclinical models are crucial to investigate GBM biology and develop novel treatments. Syngeneic models, which consist in injecting murine GBM cells into mice with a similar genetic background, offer reproducibility, cost-effectiveness, and an intact immune system, making them ideal for immunotherapy research.

View Article and Find Full Text PDF

Background: B7 homolog 3 (B7-H3), an overexpressed antigen across multiple solid cancers, represents a promising target for CAR T cell therapy. This study investigated the expression of B7-H3 across various solid tumors and developed novel monoclonal antibodies (mAbs) targeting B7-H3 for CAR T cell therapy.

Methods: Expression of B7-H3 across various solid tumors was evaluated using RNA-seq data from TCGA, TARGET, and GTEx datasets and by flow cytometry staining.

View Article and Find Full Text PDF

The natural product micheliolide promotes the nuclear translocation of GAPDH via binding to Cys247 and induces glioblastoma cell death in combination with temozolomide.

Biochem Pharmacol

January 2025

College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China. Electronic address:

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is significantly upregulated in glioblastoma (GBM) and plays a crucial role in cell apoptosis and drug resistance. Micheliolide (MCL) is a natural product with a variety of antitumour activities, and the fumarate salt form of dimethylamino MCL (DMAMCL; commercial name ACT001) has been tested in clinical trials for recurrent GBM; this compound suppresses the proliferation of GBM cells by rewiring aerobic glycolysis. Herein, we demonstrated that MCL directly targets GAPDH through covalent binding to the cysteine 247 (Cys247) residue.

View Article and Find Full Text PDF

Update on the Progress of Musashi-2 in Malignant Tumors.

Front Biosci (Landmark Ed)

January 2025

Department of Hepatobiliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China.

Since the discovery of the Musashi (MSI) protein, its ability to affect the mitosis of Drosophila progenitor cells has garnered significant interest among scientists. In the following 20 years, it has lived up to expectations. A substantial body of evidence has demonstrated that it is closely related to the development, metastasis, migration, and drug resistance of malignant tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!