Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: During the second wave of COVID-19 in August 2020, the Tokyo Metropolitan Government implemented public health and social measures to reduce on-site dining. Assessing the associations between human behavior, infection, and social measures is essential to understand achievable reductions in cases and identify the factors driving changes in social dynamics.
Objective: The aim of this study was to investigate the association between nighttime population volumes, the COVID-19 epidemic, and the implementation of public health and social measures in Tokyo.
Methods: We used mobile phone location data to estimate populations between 10 PM and midnight in seven Tokyo metropolitan areas. Mobile phone trajectories were used to distinguish and extract on-site dining from stay-at-work and stay-at-home behaviors. Numbers of new cases and symptom onsets were obtained. Weekly mobility and infection data from March 1 to November 14, 2020, were analyzed using a vector autoregression model.
Results: An increase in the number of symptom onsets was observed 1 week after the nighttime population volume increased (coefficient=0.60, 95% CI 0.28 to 0.92). The effective reproduction number significantly increased 3 weeks after the nighttime population volume increased (coefficient=1.30, 95% CI 0.72 to 1.89). The nighttime population volume increased significantly following reports of decreasing numbers of confirmed cases (coefficient=-0.44, 95% CI -0.73 to -0.15). Implementation of social measures to restaurants and bars was not significantly associated with nighttime population volume (coefficient=0.004, 95% CI -0.07 to 0.08).
Conclusions: The nighttime population started to increase after decreasing incidence of COVID-19 was announced. Considering time lags between infection and behavior changes, social measures should be planned in advance of the surge of an epidemic, sufficiently informed by mobility data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115398 | PMC |
http://dx.doi.org/10.2196/27342 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!