AI Article Synopsis

  • Multivalent glycosidase inhibitors have potential but require more research for broader applications.
  • Two positional isomeric perylene bisimide derivatives, conjugated with 1-deoxynojirimycin, were synthesized, showing differences in their optical properties and glycosidase inhibition capabilities.
  • One derivative demonstrated significant blood glucose reduction in mice, revealing its potential as an antihyperglycemic agent linked to specific molecular interactions.

Article Abstract

Although multivalent glycosidase inhibitors have shown enhanced glycosidase inhibition activities, further applications and research directions need to be developed in the future. In this paper, two positional isomeric perylene bisimide derivatives ( and ) with 1-deoxynojirimycin conjugated were synthesized. Furthermore, and showed positional isomeric effects on the optical properties, self-assembly behaviors, glycosidase inhibition activities, and hypoglycemic effects. Importantly, exhibited potent hypoglycemic effects in mice with 41.33 ± 2.84 and 37.45 ± 3.94% decreases in blood glucose at 15 and 30 min, respectively. The molecular docking results showed that the active fragment of has the highest binding energy (9.649 kcal/mol) and the highest total hydrogen bond energy (62.83 kJ/mol), which were related to the positional isomeric effect on the hypoglycemic effect in mice. This work introduced a new means to develop antihyperglycemic agents in the field of multivalent glycomimetics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.1c00036DOI Listing

Publication Analysis

Top Keywords

positional isomeric
16
glycosidase inhibition
12
isomeric effects
8
effects optical
8
optical properties
8
multivalent glycosidase
8
inhibition activities
8
hypoglycemic effects
8
positional
4
effects
4

Similar Publications

Organic photovoltaic materials that can be processed via non-halogenated solvents are crucial for the large-area manufacturing of organic solar cells (OSCs). However, the limited available of electron acceptors with adequate solubility and favorable molecular packing presents a challenge in achieving efficient non-halogenated solvent-processed OSCs. Herein, inspired by the three-dimensional dimeric acceptor CH8-4, we employed a molecular isomerization strategy to synthesize its isomers, CH8-4A and CH8-4B, by tuning the position of fluorine (F) atom in the central unit.

View Article and Find Full Text PDF

The vapor-phase alkylation of phenol with methanol was investigated on X zeolites and modified X zeolites. First, the difference of product distribution was tested between acid zeolite (HZSM-5, HX, HMCM-22, and Hβ) and basic zeolite X (KX and CsX). Then, X zeolites were modified with Li, K, Cs, Ca, Mg, La, and Ce ion exchange to adjust the acid-base properties of the zeolites.

View Article and Find Full Text PDF

Aldol reactions are one of the most fundamental organic reactions involving the formation of carbon-carbon bonds that are commonly used in the synthesis of complex molecules through the condensation of an enol or enolate with a carbonyl group. The aldol reaction of thiohydantoin derivatives with benzaldehyde starts with hydrogen removal from C5 by lithium diisopropylamide (LDA) to form the enolate. Benzaldehyde adds to the enolate either at the less or more hindered site.

View Article and Find Full Text PDF

Kinetic, thermodynamic, and ab initio insights of AsnGly isomerisation as a ticking time bomb for protein integrity.

Commun Chem

December 2024

Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary.

Under physiological conditions in peptides or proteins, the -AsnGly- motif autonomously rearranges within hours/days to β-Asp and α-Asp containing sequence, via succinimide intermedier. The formation of the succinimide is the rate-limiting step, with a strong pH and temperature dependence. We found that Arg(+) at the (n + 2) position (relative to Asn in the n position) favors isomerisation by forming a transition-state like structure, whereas Glu(-) disfavors isomerisation by adopting a β-turn like conformer.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed a new method for remote functionalization that uses a borenium ion as a catalyst instead of traditional transition metals, addressing issues like metal residue and catalyst poisoning.
  • The process allows for site-selective modification of molecules by enabling the "walking" of a boron group along a carbon chain, ultimately favoring the formation of α-borylation products.
  • This metal-free approach shows compatibility with various functional groups and can facilitate the synthesis of unique compounds, including those helpful in creating bioactive molecules.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!