Magnetoelectrics are witnessing an ever-growing success toward the voltage-controlled magnetism derived from inorganic materials. However, these inorganic materials have predominantly focused on the ferroelectromagnetism at solid-to-solid interfaces and suffered several drawbacks, including the interface-sensitive coupling mediators, high-power electric field, and limited chemical tunability. Here, we report a promising design strategy to shift the paradigm of next-generation molecular magnetoelectrics, which relies on the integration between molecular magnetism and electric conductivity though an in situ cross-linking strategy. Following this approach, we demonstrate a versatile and efficient synthesis of flexible molecular-based magnetoelectronics by cross-linking of magnetic coordination networks that incorporate conducting chain building blocks. The as-grown compounds feature an improved critical temperature up to 337 K and a room-temperature magnetism control of low-power electric field. It is envisaged that the cross-linking of molecular interfaces is a feasible method to couple and modulate magnetism and electron conducting systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.1c01146 | DOI Listing |
Mater Horiz
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
In recent years, the widespread use of wood products has been observed in many fields. Wooden products have excellent green and environmentally friendly characteristics, but their performance often cannot meet people's needs. Many researchers have conducted in-depth research on wood-based composite materials and their modification methods in order to improve the performance of wood.
View Article and Find Full Text PDFJ Environ Sci Health B
January 2025
Department of Chemistry and Chemical Engineering, Shenyang Institute of Science and Technology, Shenyang, China.
The widespread use of antibiotics has led to significant water pollution. Photocatalysis can effectively degrade antibiotics, but the performance is greatly limited by the photogenerated carrier recombination in the photocatalytic material g-CN. Constructing heterojunctions can enhance interfacial charge transfer, leading to more stable and efficient photocatalysis.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA.
Room-temperature non-aqueous sodium metal batteries are viable candidates for cost-effective and safe electrochemical energy storage. However, they show low specific energy and poor cycle life as the use of conventional organic-based non-aqueous electrolyte solutions enables the formation of interphases that cannot prevent degradations at the positive and negative electrodes. Here, to promote the formation of inorganic NaF-rich interphases on both negative and positive electrodes, we propose the salt-in-presalt (SIPS) electrolyte formulation strategy.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
Co-pyrolysis is an efficient approach for municipal sewage sludge (SS) treatment, facilitating the production of biochar and promoting the stabilization and removal of heavy metals, particularly when combined with chlorinated materials. This study explores the impact of pyrolysis temperatures (400 °C and 600 °C) and chlorinated additives (polyvinyl chloride (PVC) as an organic chloride source and ferric chloride (FeCl) as an inorganic chloride source) at 10% and 20% concentrations, on the yield, chemical speciation, leachability, and ecological risks of arsenic (As), chromium (Cr), and zinc (Zn) in biochar derived from SS. The results revealed that increasing the pyrolysis temperature from 400 to 600 °C significantly reduced biochar yield due to enhanced volatilization of organic components, as well as the removal of heavy metals in interaction with chlorinated materials.
View Article and Find Full Text PDFEnviron Res
January 2025
Faculty for Chemistry, Department of Physical Chemistry, University of Vienna, Vienna, Austria.
Composite photocatalysts based on metal nanoparticles and functional polymers attract much attention compared to inorganic photocatalysts. In this study, a reusable magnetite/anion exchanger (FeO/PPE-2) functional material is synthesized by a hydrothermal method, and its photocatalytic activity is evaluated for the photocatalytic degradation of Rhodamine B (RhB). The results from materials characterization confirm a well-defined morphology of magnetic FeO/PPE-2 functional material and the formation of FeO nanocrystals with different shapes and sizes on the surface of anion exchange material (PPE-2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!