piRNAs are a class of small non-coding RNA molecules, which interact with the PIWI family and have many important and diverse biological functions. The present review is aimed to provide guidelines and contribute to piRNA research. We focused on the four types of identification models on piRNA-related molecules, including piRNA, piRNA cluster, piRNA target, and disease-related piRNA. We evaluated the types of tools for the identification of piRNAs based on five aspects: datasets, features, classifiers, performance, and usability. We found the precision of 2lpiRNApred was the highest in datasets of model organisms, piRNN had a better performance of datasets of non-model organisms, and 2L-piRNA had the fastest recognition speed of all tools. In addition, we presented an overview of piRNA databases. The databases were divided into six categories: basic annotation, comprehensive annotation, isoform, cluster, target, and disease. We found that piRNA data of non-model organisms, piRNA target data, and piRNA-disease-associated data should be strengthened. Our review might assist researchers in selecting appropriate tools or datasets for their studies, reveal potential problems and shed light on future bioinformatics studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12539-021-00428-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!