As the green tactics for enhancing plant growth and production using naturally occurring materials are highly needed, it is important to use the nanoformulation of these materials as an attractive novel technique. Therefore, this research has been performed to evaluate the plants' morphological traits, the qualitative parameters, and molecular genetic characteristics using random amplified polymorphic DNA (RAPD) of French basil independence on growth biostimulators and their nanocomposite. The treatments included normal formulations and nanocomposite formulation of humic acid (5 mM HA), salicylic acid (1.4 mM SA), and glycyrrhizic acid ammonium salt (0.4 mM GA) and control treatment (water application). The results show that foliar spray with HA, SA, GA, and their nanocomposites significantly increased (p ≤ 0.05) on all vegetative growth characters, photosynthetic pigments, oil yield/plant, mineral content, and antibacterial activity as compared with control plants. Also, 1,1-diphenyl-2-picrylhydrazyl (DPPH) values of different samples used varied from 70.63 to 74.93%, with a significant increase compared to untreated plants. The most marked increases have been observed in treated plants with biostimulants in the nanocomposites form than in the natural form. On the other hand, GA and its nanocomposite showed variable effects on basil plants and gave the lowest increase values in all parameters than the other biostimulant but have high antimicrobial activity. For the molecular study, ten selected primers displayed a total of 288 amplified fragments scored per primer ranging from 7 to 46 fragments; 157 bands were polymorphic with 69% polymorphism. It could be concluded that humic acid and its nanocomposite are the most effective biostimulants that increased plant productivity and oil content.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-14022-1 | DOI Listing |
Bioresour Technol
January 2025
College of Resources and Environment, Northeast Agricultural University, Harbin 150030 Heilongjiang, China. Electronic address:
Enhancing the passivation of heavy metals and increasing organic matter content during the composting of sewage sludge poses significant challenges for maximizing its utilization value. Results indicated that in the control, biochar, microbial agents and microbial agents-loaded biochar (BCLMA) groups, BCLMA addition led to a higher composting temperature, with increases of 17-62% in humic acid, 25-73% in germination index, and 30-35% in organic matter consumption. And the residual fraction of Cu, Zn, Cr and Cd were increased by 30%, 12%, 22%, and 17%, respectively.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China.
Polyelectrolyte multilayer (PEM) membranes, with advantageous features of versatile chemistry and structures, are driving the development of advanced nanofiltration (NF) membranes with exceptional performance. While developing a printing method holds great promise for the eventual mass production of these membranes, reports on the printing method and the underlying mechanisms of membrane formation are currently scarce. Herein, we develop an aerosol-assisted printing (AAP) system for fabricating PEM NF membranes with highly tunable separation characteristics.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.
Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
April 2025
Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York, USA.
Rationale: The complexation with dissolved organic matter (DOM) is a pivotal factor influencing transformations, transport, and bioavailability of mercury (Hg) in aquatic environments. However, identifying these complexes poses a significant challenge because of their low concentrations and the presence of coexisting ions.
Methods: In this study, mercury-dissolved organic matter (Hg-DOM) complexes were isolated through solid-phase extraction (SPE) from Hg-humic acid suspensions, and complexes were putatively identified using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS).
Water Res
January 2025
School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China. Electronic address:
The influence of algal organic matter (AOM) on the settling performance of algal flocs remains poorly understood. To address this, we employed fractionation techniques based on molecular weight to isolate different AOM fractions and analyzed their effects on floc structure and settling performance. This involved comparing the concentrations, compositions, potentials, and functional groups of organic matter before and after coagulation-sedimentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!