A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep learning-based denoising algorithm in comparison to iterative reconstruction and filtered back projection: a 12-reader phantom study. | LitMetric

Objectives: (1) To compare low-contrast detectability of a deep learning-based denoising algorithm (DLA) with ADMIRE and FBP, and (2) to compare image quality parameters of DLA with those of reconstruction methods from two different CT vendors (ADMIRE, IMR, and FBP).

Materials And Methods: Using abdominal CT images of 100 patients reconstructed via ADMIRE and FBP, we trained DLA by feeding FBP images as input and ADMIRE images as the ground truth. To measure the low-contrast detectability, the randomized repeat scans of Catphan® phantom were performed under various conditions of radiation exposures. Twelve radiologists evaluated the presence/absence of a target on a five-point confidence scale. The multi-reader multi-case area under the receiver operating characteristic curve (AUC) was calculated, and non-inferiority tests were performed. Using American College of Radiology CT accreditation phantom, contrast-to-noise ratio, target transfer function, noise magnitude, and detectability index (d') of DLA, ADMIRE, IMR, and FBPs were computed.

Results: The AUC of DLA in low-contrast detectability was non-inferior to that of ADMIRE (p < .001) and superior to that of FBP (p < .001). DLA improved the image quality in terms of all physical measurements compared to FBPs from both CT vendors and showed profiles of physical measurements similar to those of ADMIRE.

Conclusions: The low-contrast detectability of the proposed deep learning-based denoising algorithm was non-inferior to that of ADMIRE and superior to that of FBP. The DLA could successfully improve image quality compared with FBP while showing the similar physical profiles of ADMIRE.

Key Points: • Low-contrast detectability in the images denoised using the deep learning algorithm was non-inferior to that in the images reconstructed using standard algorithms. • The proposed deep learning algorithm showed similar profiles of physical measurements to advanced iterative reconstruction algorithm (ADMIRE).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00330-021-07810-3DOI Listing

Publication Analysis

Top Keywords

low-contrast detectability
20
deep learning-based
12
learning-based denoising
12
denoising algorithm
12
image quality
12
physical measurements
12
iterative reconstruction
8
admire
8
dla admire
8
admire fbp
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!