Depth Electrode Guided Anterior Insulectomy: 2-Dimensional Operative Video.

Oper Neurosurg (Hagerstown)

Department of Neurosurgery, Yale New Haven Hospital, New Haven, Connecticut, USA.

Published: July 2021

The insula is well established as an epileptogenic area.1 Insular epilepsy surgery demands precise anatomic knowledge2-4 and tailored removal of the epileptic zone with careful neuromonitoring.5 We present an operative video illustrating an intracranial electroencephalogram (EEG) depth electrode guided anterior insulectomy.  We report a 17-yr-old right-handed woman with a 4-yr history of medically refractory epilepsy. The patient reported daily nocturnal ictal vocalization preceded by an indescribable feeling. Preoperative evaluation was suggestive of a right frontal-temporal onset, but the noninvasive results were discordant. She underwent a combined intracranial EEG study with a frontal-parietal grid, with strips and depth electrodes covering the entire right hemisphere. Epileptiform activity was observed in contact 6 of the anterior insula electrode. The patient consented to the procedure and to the publication of her images.  A right anterior insulectomy was performed. First, a portion of the frontal operculum was resected and neuronavigation was used for the initial insula localization. However, due to unreliable neuronavigation (ie, brain shift), the medial and anterior borders of the insular resection were guided by the depth electrode reference. The patient was discharged 3 d after surgery with no neurological deficits and remains seizure free.  We demonstrate that depth electrode guided insular surgery is a safe and precise technique, leading to an optimal outcome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493659PMC
http://dx.doi.org/10.1093/ons/opab112DOI Listing

Publication Analysis

Top Keywords

depth electrode
16
electrode guided
12
anterior insulectomy
12
guided anterior
8
operative video
8
depth
5
anterior
5
guided
4
insulectomy 2-dimensional
4
2-dimensional operative
4

Similar Publications

Designing advanced materials that effectively mitigate the poor cycle life of battery-type electrodes with high specific capacities is crucial for next-generation energy storage systems. Herein, graphene oxide-ceria (GO-CeO) nanocomposite synthesized via a facile wet chemical route is explored as cathode for high-performance supercapacitors. The morphological analysis suggests fine ceria (CeO) nanoparticles dispersed over ultrathin graphene oxide (GO) sheets while structural studies reveal face-centered cubic phase of CeO in the nanocomposite.

View Article and Find Full Text PDF

The design and screening of low cost and high efficiency oxygen reduction reaction (ORR) electrocatalysts is vital in the realms of fuel cells and metal-air batteries. Existing studies largely rely on the calculation of absorption free energy, a method established 20 years ago by Jens K. Nørskov.

View Article and Find Full Text PDF

The poor reversibility of the zinc anode caused by interfacial side reactions and dendritic growth poses significant constraints on the practical application of aqueous zinc-ion batteries. Herein, a co-solute, acesulfame potassium, with strongly polar, zincophilic guest anions is introduced into a conventional low-concentration aqueous electrolyte. This regulation enhances the electrolyte's ionic conductivity and accelerates the desolvation process of zinc ions at the electrode/electrolyte interface.

View Article and Find Full Text PDF

Purpose: Cochlear implants (CI) are the most successful bioprosthesis in medicine probably due to the tonotopic anatomy of the auditory pathway and of course the brain plasticity. Correct placement of the CI arrays, respecting the inner ear anatomy are therefore important. The ideal trajectory to insert a cochlear implant array is defined by an entrance through the round window membrane and continues as long as possible parallel to the basal turn of the cochlea.

View Article and Find Full Text PDF

Transformer-based neural speech decoding from surface and depth electrode signals.

J Neural Eng

January 2025

Electrical and Computer Engineering Department, New York University, 370 Jay Street, Brooklyn, New York, New York, 10012-1126, UNITED STATES.

This study investigates speech decoding from neural signals captured by intracranial electrodes. Most prior works can only work with electrodes on a 2D grid (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!