NMR reveals the metabolic changes induced by auranofin in A2780 cancer cells: evidence for glutathione dysregulation.

Dalton Trans

Center of Magnetic Resonance, University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Firenze, Italy. and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Firenze, Italy and Department of Chemistry, University of Florence, via della Lastruccia 3-13, 50019, Sesto Fiorentino, Firenze, Italy.

Published: May 2021

NMR metabolomics represents a powerful tool to characterize the cellular effects of drugs and gain detailed insight into their mode of action. Here, we have exploited NMR metabolomics to illustrate the changes in the metabolic profile of A2780 ovarian cancer cells elicited by auranofin (AF), a clinically approved gold drug now repurposed as an anticancer agent. An early and large increase in intracellular glutathione is highlighted as the main effect of the treatment accompanied by small but significant changes in the levels of a few additional metabolites; the general implications of these findings are discussed in the frame of the current mechanistic knowledge of AF.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1dt00750eDOI Listing

Publication Analysis

Top Keywords

cancer cells
8
nmr metabolomics
8
nmr reveals
4
reveals metabolic
4
metabolic changes
4
changes induced
4
induced auranofin
4
auranofin a2780
4
a2780 cancer
4
cells evidence
4

Similar Publications

Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.

View Article and Find Full Text PDF

Background: Over the past five years, the pregnancy rate in assisted reproductive technology (ART) programs in Russia has remained relatively stable. The aim of this study was to assess the distribution of monocyte and macrophage subsets in the blood and follicular fluid of infertile women undergoing assisted reproductive technology.

Methods: The study involved 45 women with a mean age of 35 ± 4.

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Endometrial Cancer (EC) is one of the most common gynecological malignancies, ranking first in developed countries and regions. The occurrence and development of EC is closely associated with genetic mutations. mutation, in particular, can lead to the dysfunction of numerous regulatory factors and alteration of the tumor microenvironment (TME).

View Article and Find Full Text PDF

The Role of Sulfatides in Liver Health and Disease.

Front Biosci (Landmark Ed)

January 2025

Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.

Sulfatides or 3-O-sulfogalactosylceramide are negatively charged sulfated glycosphingolipids abundant in the brain and kidneys and play crucial roles in nerve impulse conduction and urinary pH regulation. Sulfatides are present in the liver, specifically in the biliary tract. Sulfatides are self-lipid antigens presented by cholangiocytes to activate cluster of differentiation 1d (CD1d)-restricted type II natural killer T (NKT) cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!