Microbial biomass, as an environmentally friendly resource, has attracted considerable attention as a green biomaterial for the production of unique and functionalised CDs; however, further exploration is required to characterise CDs derived from bacteria. In this study, a green biomaterial (fluorescence CDs-HS18) was successfully synthesised via a hydrothermal method from Ureibacillus thermosphaericus HS-18 specimens isolated from a hot spring. The prepared CDs-HS18 possess excellent photo-physical properties, outstanding fluorescence capabilities, and high biocompatibility, which make them desirable candidates for multi-mode imaging applications. Our results demonstrate that the prepared CDs can selectively stain the membrane of the biological cells tested and can be rapidly distributed to all parts of the leaf via the veins and intercellular interstitium through transpiration. Additionally, CDs-HS18 are likely to enter the digestive tract of Microworms through ingestion and spread rapidly through the entire body and may finally be excreted through the anus. Furthermore, the rapid and highly selective detection platform based on CDs-HS18 exhibited an excellent linear response for Cr6+ between 0 and 9 μM, with a detection limit of 36 nM. This research will expand the understanding of the characteristics of green biomaterials derived from bacteria and widen the application scope of hot spring resources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0ay02213f | DOI Listing |
Biomaterials
January 2025
Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China. Electronic address:
The chronic inflammation and matrix metalloprotease (MMP)-induced tissue degradation significantly disrupt re-epithelization and delay the healing process of diabetic wounds. To address these issues, we produced nanofibrils from Antheraea pernyi (Ap) silk fibers via a facile and green treatment of swelling and shearing. The integrin receptors on the cytomembrane could specifically bind to the Ap nanofibrils (ApNFs) due to their inherent Arg-Gly-Asp (RGD) motifs, which activated platelets to accelerate coagulation and promoted fibroblast migration, adhesion and spreading.
View Article and Find Full Text PDFBioconjug Chem
January 2025
Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
Silica nano/microparticles have generated significant interest for the past decades, emerging as a versatile material with a wide range of applications in photonic crystals, bioimaging, chemical sensors, and catalysis. This study focused on synthesizing silica nano/microparticles ranging from 20 nm to 1.2 μm using the Stöber and modified Stöber methods.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Unité en Sciences Biologiques et Biotechnologies, UMR 6286, Nantes Université, Centre National de la Recherche Scientifique (CNRS), Nantes, France.
Obligate root parasitic plants of the Orobanchaceae family exhibit an intricate germination behavior. The host-dependent germination process of these parasites has prompted extensive research into effective control methods. While the effect of biomaterials such as amino acids and microRNA-encoded peptides have been explored, the effect of double-stranded RNAs (dsRNAs) has remained unexamined during the germination process.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussels (VUB), Laarbeeklaan 103, Brussels 1090 Belgium. Electronic address:
Deep eutectic solvents (DES) have an emerging scientific role, assisting modern pharmaceutics. They are uniquely supporting the resolution of crucial issues, such as the effective extraction and isolation of bio-actives. They act as media and catalysts for pharmaceutical drug synthesis, and as green solvents and modifiers in pharmaceutical analysis.
View Article and Find Full Text PDFBiofabrication
January 2025
Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin, DO2 YN77, IRELAND.
Osteomyelitis, a severe bone infection, is an extremely challenging complication in the repair of traumatic bone defects. Furthermore, the use of long-term high-dose antibiotics in standard treatment increases the risks of antibiotic resistance. Herein, an antibiotic-free, collagen silver-doped hydroxyapatite (coll-AgHA) scaffold reinforced with a 3D printed polycaprolactone (PCL) framework was developed with enhanced mechanical properties to be used in the repair of load-bearing defects with antimicrobial properties as a preventative measure against osteomyelitis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!