In vivo imaging of platelets will provide a better understanding of their critical roles in arterial cardiovascular disease, hemostasis, inflammation, and cancer. Here, we demonstrate the feasibility of using radioiodine studded gold nanoprobes (RIS-GNPs) as a platelet tracker for nuclear medicine imaging in tumor-bearing mice using positron emission tomography and computed tomography (PET/CT). Platelet labeling with RIS-GNPs did not alter the platelet functions, such as cellular proliferation and aggregation. PET/CT imaging clearly revealed the migration of platelets into tumor sites at 1 to 5 h post-transfer of RIS-GNP-labeled platelets, which was consistent with the biodistribution data. Our findings suggest that the imaging approach using RIS-GNPs makes it feasible to visualize the biological behavior of platelets in living organisms with cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0tb02265aDOI Listing

Publication Analysis

Top Keywords

radioiodine studded
8
studded gold
8
gold nanoprobes
8
visualization platelet
4
platelet recruitment
4
recruitment tumor
4
tumor lesions
4
lesions highly
4
highly sensitive
4
sensitive stable
4

Similar Publications

In vivo imaging of platelets will provide a better understanding of their critical roles in arterial cardiovascular disease, hemostasis, inflammation, and cancer. Here, we demonstrate the feasibility of using radioiodine studded gold nanoprobes (RIS-GNPs) as a platelet tracker for nuclear medicine imaging in tumor-bearing mice using positron emission tomography and computed tomography (PET/CT). Platelet labeling with RIS-GNPs did not alter the platelet functions, such as cellular proliferation and aggregation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!