We identify two distinct regimes for the diffusion of the ionic liquid [BMIM][PF] confined between parallel graphene walls using molecular dynamics simulations. Within 2 nm of the wall, the cations and anions form a well-defined layered structure. In this region, the in-plane diffusion coefficients are suppressed when compared to their bulk values and increase monotonically with the distance away from the wall. Beyond 2 nm from the wall, the density profile and in-plane diffusion coefficients recover their bulk values. The channel-averaged in-plane diffusion coefficients increase monotonically with wall separation and recover the bulk values at a separation of 15 nm. A simple semianalytical model is proposed that mirrors this trend. The results also highlight the importance of applying a finite-size correction to molecular dynamics-predicted diffusion coefficients of confined liquids, which may otherwise be unusually larger than their bulk values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.1c02562 | DOI Listing |
Sci Rep
January 2025
Department of CSE, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
The composition of the metal-polymer friction pair is carefully considered for interacting with water and hydrogen, ensuring the metals electrode process potential remains below waters in a neutral medium. Simultaneously, adherence to defined chemical composition ratios for the metal-polymer materials is crucial. This analysis is conducted under conditions of thermal stabilization, characterized by a minimal temperature gradient across the rim thickness within an equivalent thermal field.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
Bacteriophage infections in bacterial cultures pose a significant challenge to industrial bioprocesses, necessitating the development of innovative antiphage solutions. This study explores the antiphage potential of indigo carmine (IC), a common FDA-approved food additive. IC demonstrated selective inactivation of DNA phages (P001, T4, T1, T7, λ) with the EC values ranging from 0.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Mathematical and Physical Sciences, Catholic University of Temuco, Temuco 4813302, Chile.
: A previous study investigated the in vitro release of methylene blue (MB), a widely used cationic dye in biomedical applications, from nanocellulose/nanoporous silicon (NC/nPSi) composites under conditions simulating body fluids. The results showed that MB release rates varied significantly with the nPSi concentration in the composite, highlighting its potential for controlled drug delivery. To further analyze the relationship between diffusion dynamics and the MB concentration, this study developed a finite element (FE) method to solve Fick's equations governing the drug delivery system.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Research Laboratory for Sustainable Development and Health, Department of Applied Physics, Faculty of Sciences and Technics, Cadi Ayyad University, Marrakesh 40000, Morocco.
Considering the growing need for developing ecological materials, this study investigates the acoustic, mechanical, and thermal properties of wood composites reinforced with beech or oak wood fibres. Scanning electron microscopy (SEM) revealed a complex network of interconnected pores within the composite materials, with varying pore sizes contributing to the material's overall properties. Acoustic characterization was conducted using a two-microphone impedance tube.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
Diffusion weighted imaging (DWI) is used for monitoring purposes for lower-grade glioma (LGG). While the apparent diffusion coefficient (ADC) is clinically used, various DWI models have been developed to better understand the micro-environment. However, the validity of these models and how they relate to each other is currently unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!