Plasmonic Core-Shell Nanoparticle Enhanced Spectroscopies for Surface Analysis.

Anal Chem

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China.

Published: May 2021

Probing the properties and components of reactive surfaces is crucial for illustrating reaction mechanisms. However, common surface analysis techniques are restricted to in situ acquisition of surface information at the molecular scale in the human environment and industrial catalysis processes. Plasmonic spectroscopies are promising tools to solve this problem. This Feature is intended to introduce the plasmonic core-shell nanoparticle enhanced spectroscopies for qualitatively and quantitatively analyzing surface trace species. Four different working modalities are designed for meeting varied needs, involving in situ surface species detection, catalytic process monitoring, labeled sensing, and dual mode analysis. These newly developed plasmonic spectroscopies show great potential not only in fundamental research but also in practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c00233DOI Listing

Publication Analysis

Top Keywords

plasmonic core-shell
8
core-shell nanoparticle
8
nanoparticle enhanced
8
enhanced spectroscopies
8
surface analysis
8
plasmonic spectroscopies
8
surface
5
plasmonic
4
spectroscopies
4
spectroscopies surface
4

Similar Publications

Significant progress has been made through the optimization of modelling and device architecture solar cells has proven to be a valuable and highly effective approach for gaining a deeper understanding of the underlying physical processes in solar cells. Consequently, this research has conducted a two-dimensional (2D) perovskite solar cells (PSCs) simulation to develop an accurate model. The approach utilized in this study is based on the finite element method (FEM).

View Article and Find Full Text PDF

Shell Dependence of Highly Tunable Circular Dichroism in Chiral Hybrid Plasmonic Nanomaterials for Chiroptical Applications.

ACS Nano

January 2025

College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China.

Chiral plasmonic nanomaterials with fascinating physical and chemical properties show emerging chirality-dependent applications in photonics, catalysis, and sensing. The capability to precisely manipulate the plasmonic chirality in a broad spectral range plays a crucial role in enabling the applications of chiral nanomaterials in diverse and complex scenarios; however, it remains a challenge yet to be addressed. Here we demonstrate a strategy to significantly enhance the tunability of circular dichroism (CD) spectra of chiral nanomaterials by constructing core-shell hybrid metal-semiconductor structures with tailored shells.

View Article and Find Full Text PDF

Controllable synthesis of Pd and Pt shells on Au nanoparticles with electrodeposition.

Sci Rep

January 2025

Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.

Shells of Pd and Pt were synthesized on Au nanoparticles by electrodeposition, leading to controllable size and optical properties. This approach yielded core-shell structures with good homogeneity in size after the optimization of electrochemical parameters such as deposition current and charge transfer, as well as nanoparticle surface treatment. Dark field scattering microscopy and spectroscopy were used to track changes in the optical response of individual particles during deposition.

View Article and Find Full Text PDF

Magnetic field-induced synergistic therapy of cancer using magnetoplasmonic nanoplatform.

Mater Today Bio

February 2025

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

Combining photothermal and chemotherapy using single nanoplatform is an emerging direction in cancer nanomedicine. Herein, a magnetic field (MF) induced combination of chemo/photothermal therapy is demonstrated using FeO@mSiO@Au core@shell@satellites nanoparticles (NPs) loaded with chemotherapeutic drug doxorubicin (DOX), both and An application of an external MF to the NPs dispersion causes magnetophoretic movement and aggregation of the NPs. While the synthesized NPs only slightly absorb light at ∼800 nm, their aggregation results in a significant near infrared (NIR) absorption associated with plasmon resonance coupling between the Au satellites in the NPs aggregates.

View Article and Find Full Text PDF

Designing and optimizing photocatalysts to maximize the use of sunlight and achieve fast charge transport remains a goal of photocatalysis technology. Herein, a full-spectrum-response BiOBr:Er@BiO core-shell S-scheme heterojunction is designed with [Bi─O] tetrahedral sharing using upconversion (UC) functionality, photothermal effects, and interfacial engineering. The UC function of Er and plasmon resonance effect of BiO greatly improves the utilization of sunlight.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!