Heat transport and surface functionalization in nanocomposites of boron nitride nanotubes and polyethylene.

Phys Chem Chem Phys

State Key Lab. of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, Shaanxi, China.

Published: April 2021

This work explores the possibility for improving heat transport in a polymeric, electrical insulating material, such as polyethylene, by adding boron nitride nanotubes - a heat superdiffusive material. We use molecular dynamics simulations to study the nanocomposites formed by addition of the nanotubes to both amorphous and crystalline polyethylene, and also investigate the effect of surface functionalization using a silane coupling agent, which, being covalently attached to both the nanofiller and the polymer matrix, facilitates the heat transport between them. Even though transport is shown to deteriorate in each simulation when the coupling agents are added, they are expected to favor the nucleation of the crystalline regions about the nanotubes, thus significantly boosting heat conduction in the material along their direction.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp00419kDOI Listing

Publication Analysis

Top Keywords

heat transport
12
surface functionalization
8
boron nitride
8
nitride nanotubes
8
heat
5
transport surface
4
functionalization nanocomposites
4
nanocomposites boron
4
nanotubes
4
nanotubes polyethylene
4

Similar Publications

Background: The dried root of Inula helenium L., known as Inulae Radix in Mongolian medicine, is a widely used heat-clearing plant drug within the Asteraceae family. Alantolactone (ATL), a compound derived from Inulae Radix, is a sesquiterpene lactone with a range of biological activities.

View Article and Find Full Text PDF

Rapid urbanization and escalating climate crises place cities at the critical juncture of environmental and public health action. Urban areas are home to more than half of the global population, contributing ~ 75% of global greenhouse gas emissions. Structured surveys were completed by 191 leaders in city governments and civil society from 118 cities in 52 countries (February-April 2024).

View Article and Find Full Text PDF

Spectral heat flux redistribution upon interfacial transmission.

J Phys Condens Matter

January 2025

Department of Mechanical Engineering, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada, 89557-0312, UNITED STATES.

In nonmetallic crystals, heat is transported by phonons of different frequencies, each contributing differently to the overall heat flux spectrum. In this study, we demonstrate a significant redistribution of heat flux among phonon frequencies when phonons transmit across the interface between dissimilar solids. This redistribution arises from the natural tendency of phononic heat to re-establish the bulk distribution characteristic of the material through which it propagates.

View Article and Find Full Text PDF

The ability of nanofluids to improve heat transmission in thermal systems is well established. This work investigates the three-dimensional theoretical behavior of Darcy-Forchheimer nanofluids in tilted magnetohydrodynamics. In this study, the Soret effect, micro-motile organisms, thermophoresis, and heat radiation are also considered.

View Article and Find Full Text PDF

The heart of larval serves as a model preparation in addressing cardiac function, as known genetic mutations can be mimicked to examine therapies. Pharmacological agents and function of proteins, like TRPA1, which affect ionic transport and ion concentrations can be investigated for their action on cardiac function in this model. To maintain function, the larval heart tube needs to remain viable; thus, a physiological saline is required.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!