Carbon nanotube (CNT) and perovskite composite materials possessing the combined advantages of CNTs and perovskites have drawn substantial attention due to their promising applications in photovoltaic and optoelectronic devices. Understanding the band alignment of heterojunctions is crucial for further performance improvement. Here, we systematically investigated the interfacial electronic structure and optical absorption of a semiconducting CNT/CH3NH3PbI3 heterojunction via density functional theory calculations. It was found that the CNT/PbI2-terminated CH3NH3PbI3 (001) surface heterojunction is a type-I band alignment, while the CNT/CH3NH3I-terminated CH3NH3PbI3 (001) surface heterojunction is a type-II band alignment, suggesting the different charge carrier transfer processes as well as termination dependence of band alignment in the CNT/CH3NH3PbI3 heterojunction. Further investigation indicated that applying electric fields can modify the band alignment type in the CNT/CH3NH3PbI3 heterojunction. Our results provide the first insight into the interfacial electronic structure of the CNT/CH3NH3PbI3 heterojunction, which may give a new route for designing optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp00914aDOI Listing

Publication Analysis

Top Keywords

band alignment
24
cnt/ch3nh3pbi3 heterojunction
16
termination dependence
8
optoelectronic devices
8
interfacial electronic
8
electronic structure
8
ch3nh3pbi3 001
8
001 surface
8
surface heterojunction
8
heterojunction
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!