Sulfidated copper-iron bimetallic particles (S-Fe-Cu) were prepared by sulfidation of copper-iron bimetallic particles (Fe-Cu) obtained by the replacement reaction in the liquid phase. The influencing factors of S-Fe-Cu in removing Cr(Ⅵ) in water were determined. BET, SEM-EDX, and XPS were used to analyze the superficial structure and mineralogy of S-Fe-Cu. Combined with batch experiments, the mechanisms of Cr removal were analyzed. The results showed that FeS was successfully loaded on the surface of S-Fe-Cu, and the optimum S/Fe molar ratio and Cu/Fe mass ratio in theory were 0.056 and 0.025, respectively. Compared with Fe-Cu, the specific surface area of S-Fe-Cu increased by 2.1 times, and the Cr removal efficiency increased by 6.1 times under a pH of 5. A high Cr removal efficiency was maintained under alkaline conditions. Meanwhile, chloride ions could penetrate the passivation layer of iron-based material, which was beneficial to the direct oxidation of Fe to produce Fe(Ⅱ) and advance the performance of S-Fe-Cu for Cr removal. The XPS results showed that the removal mechanism of Cr(Ⅵ) in water included adsorption, reduction, and coprecipitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202010120 | DOI Listing |
J Environ Sci (China)
March 2025
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China. Electronic address:
Electrocatalytic reduction of nitrate to ammonia has been considered a promising and sustainable pathway for pollutant treatment and ammonia has significant potential as a clean energy. Therefore, the method has received much attention. In this work, Cu/Fe 2D bimetallic metal-organic frameworks were synthesized by a facile method applied as cathode materials without high-temperature carbonization.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand.
This study aims to enhance the stability and effectiveness of heterogeneous catalysts in Fenton-like reactions, explicitly addressing the acidity limitations inherent in traditional Fenton processes. Copper-iron was synthesized through co-precipitation, and a catalyst bead was produced from hydrogel formation. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) confirm phases in the bimetallic Copper-iron, aligning with the intended composition.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
July 2024
Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China.
Development of carbon materials with high activity was important for rapid degradation of emerging pollutants. In this paper, a novel nanoscale zero-valent iron-copper bimetallic biochar (nZVIC-BC) was synthesized by carbothermal reduction of waste pine wood and copper-iron layered double hydroxides (LDHs). Characterization and analysis of its structural, elemental, crystalline, and compositional aspects using XRD, FT-IR, SEM, and TEM confirmed the successful preparation of nZVIC-BC and the high dispersion of Fe-Cu nanoparticles in an ordered carbon matrix.
View Article and Find Full Text PDFEnviron Res
September 2024
Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia.
In this study, bimetallic Cu-Fe nanoparticles were synthesized using the green approach with Piper betle leaves, and the removal efficiency of one of the pharmaceutical compounds, Atorvastatin, was investigated. UV, SEM, FTIR, EDAX, particle size, and zeta potential measurements were used to confirm nanoparticle fabrication. The removal efficiency of Atorvastatin (10 mg/L) by bimetallic Cu-Fe nanoparticles was 67% with a contact time of 30 min at pH 4, the adsorbent dosage of 0.
View Article and Find Full Text PDFEnviron Geochem Health
March 2024
Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, 11442, Riyadh, Saudi Arabia.
Bimetallic nanoparticles (NPs) are considered superior in terms of stability and function with respect to its monometallic counterparts. Hence, in the present study Hibiscus rosa-sinensis flower extract was used to synthesis copper-iron bimetallic nanoparticles (HF-FCNPs). HF-FCNPs was characterized and its applications (biological and environmental) were determined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!