[Preparation of Sulfidated Copper-Iron Bimetallic Composited Material and Its Mechanism for Chromium Removal].

Huan Jing Ke Xue

CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.

Published: May 2021

Sulfidated copper-iron bimetallic particles (S-Fe-Cu) were prepared by sulfidation of copper-iron bimetallic particles (Fe-Cu) obtained by the replacement reaction in the liquid phase. The influencing factors of S-Fe-Cu in removing Cr(Ⅵ) in water were determined. BET, SEM-EDX, and XPS were used to analyze the superficial structure and mineralogy of S-Fe-Cu. Combined with batch experiments, the mechanisms of Cr removal were analyzed. The results showed that FeS was successfully loaded on the surface of S-Fe-Cu, and the optimum S/Fe molar ratio and Cu/Fe mass ratio in theory were 0.056 and 0.025, respectively. Compared with Fe-Cu, the specific surface area of S-Fe-Cu increased by 2.1 times, and the Cr removal efficiency increased by 6.1 times under a pH of 5. A high Cr removal efficiency was maintained under alkaline conditions. Meanwhile, chloride ions could penetrate the passivation layer of iron-based material, which was beneficial to the direct oxidation of Fe to produce Fe(Ⅱ) and advance the performance of S-Fe-Cu for Cr removal. The XPS results showed that the removal mechanism of Cr(Ⅵ) in water included adsorption, reduction, and coprecipitation.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202010120DOI Listing

Publication Analysis

Top Keywords

copper-iron bimetallic
12
sulfidated copper-iron
8
bimetallic particles
8
crⅥ water
8
increased times
8
removal efficiency
8
s-fe-cu
6
removal
5
[preparation sulfidated
4
bimetallic composited
4

Similar Publications

2D copper-iron bimetallic metal-organic frameworks for reduction of nitrate with boosted efficiency and ammonia selectivity.

J Environ Sci (China)

March 2025

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China. Electronic address:

Electrocatalytic reduction of nitrate to ammonia has been considered a promising and sustainable pathway for pollutant treatment and ammonia has significant potential as a clean energy. Therefore, the method has received much attention. In this work, Cu/Fe 2D bimetallic metal-organic frameworks were synthesized by a facile method applied as cathode materials without high-temperature carbonization.

View Article and Find Full Text PDF

This study aims to enhance the stability and effectiveness of heterogeneous catalysts in Fenton-like reactions, explicitly addressing the acidity limitations inherent in traditional Fenton processes. Copper-iron was synthesized through co-precipitation, and a catalyst bead was produced from hydrogel formation. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) confirm phases in the bimetallic Copper-iron, aligning with the intended composition.

View Article and Find Full Text PDF

Development of carbon materials with high activity was important for rapid degradation of emerging pollutants. In this paper, a novel nanoscale zero-valent iron-copper bimetallic biochar (nZVIC-BC) was synthesized by carbothermal reduction of waste pine wood and copper-iron layered double hydroxides (LDHs). Characterization and analysis of its structural, elemental, crystalline, and compositional aspects using XRD, FT-IR, SEM, and TEM confirmed the successful preparation of nZVIC-BC and the high dispersion of Fe-Cu nanoparticles in an ordered carbon matrix.

View Article and Find Full Text PDF

In this study, bimetallic Cu-Fe nanoparticles were synthesized using the green approach with Piper betle leaves, and the removal efficiency of one of the pharmaceutical compounds, Atorvastatin, was investigated. UV, SEM, FTIR, EDAX, particle size, and zeta potential measurements were used to confirm nanoparticle fabrication. The removal efficiency of Atorvastatin (10 mg/L) by bimetallic Cu-Fe nanoparticles was 67% with a contact time of 30 min at pH 4, the adsorbent dosage of 0.

View Article and Find Full Text PDF

Bimetallic nanoparticles (NPs) are considered superior in terms of stability and function with respect to its monometallic counterparts. Hence, in the present study Hibiscus rosa-sinensis flower extract was used to synthesis copper-iron bimetallic nanoparticles (HF-FCNPs). HF-FCNPs was characterized and its applications (biological and environmental) were determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!