A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Cytochrome P450 Catalyzing C-S Bond Formation in S-Heterocyclization of Chuangxinmycin Biosynthesis. | LitMetric

The Cytochrome P450 Catalyzing C-S Bond Formation in S-Heterocyclization of Chuangxinmycin Biosynthesis.

Angew Chem Int Ed Engl

NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China.

Published: July 2021

Microbial sulfur-containing secondary metabolites show various biological activities, but the C-S bond-forming in their biosynthetic metabolism has not been thoroughly understood. Here, we present genetic, biochemical and structural characterization of a cytochrome P450 monooxygenase CxnD exhibiting C-S bond forming activity in S-heterocyclization of chuangxinmycin biosynthesis. In vivo and in vitro analyses demonstrated that CxnD generated an indole-fused dihydrothiopyran skeleton from a L-Trp-derived thiol intermediate. Furthermore, X-ray crystal structure of CxnD in complex with a substrate analogue and structure-based mutagenesis revealed intimate details of the substrate binding mode. A radical mechanism initiated by abstraction of the imino hydrogen atom or an electron from indole group of the substrate was proposed for CxnD, which provided valuable insights into the molecular basis for the intra-molecular C(sp )-H thiolation by the P450 in chuangxinmycin biosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202015814DOI Listing

Publication Analysis

Top Keywords

chuangxinmycin biosynthesis
12
cytochrome p450
8
c-s bond
8
s-heterocyclization chuangxinmycin
8
p450 catalyzing
4
catalyzing c-s
4
bond formation
4
formation s-heterocyclization
4
biosynthesis microbial
4
microbial sulfur-containing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!