Background: Currently, Tigers (the top predator of an ecosystem) are on the list of endangered species. Thus the need is to understand the tiger's population genomics to design their conservation strategies.

Objective: We analyzed the molecular evolution of tiger diversity using NADH dehydrogenase subunit 4 (ND4), a significant electron transport chain component.

Methods: We have analyzed nucleotide composition and distribution pattern of ND genes, molecular evolution, evolutionary conservation pattern and conserved blocks of NADH, phylogenomics of ND4, and estimating species divergence, etc., using different bioinformatics tools and software, and MATLAB programming and computing environment.

Results: The nucleotide composition and distribution pattern of ND genes in the tiger genome demonstrated an increase in the number of adenine (A) and a lower trend of A+T content in some place of the distribution analysis. However, the observed distributions were not significant (P > 0.05). Evolutionary conservation analysis showed three highly align blocks (186 to 198, 406 to 416, and 527 to 545). On mapping the molecular evolution of ND4 among model species (n = 30), we observed its presence in a broader range of species. ND4 based molecular evolution of tiger diversity and time divergence for a tiger (20 different other species) shows that genus Panthera originated more or less at a similar time.

Conclusions: The nucleotide composition and nucleotide distribution pattern of tiger ND genes showed the evolutionary pattern and origin of tiger and Panthera lineage concerning the molecular clock, which will help to understand their adaptive evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13258-021-01089-wDOI Listing

Publication Analysis

Top Keywords

molecular evolution
20
evolution tiger
12
tiger diversity
12
nucleotide composition
12
distribution pattern
12
nadh dehydrogenase
8
composition distribution
8
pattern genes
8
evolutionary conservation
8
tiger
7

Similar Publications

Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.

View Article and Find Full Text PDF

Single-point mutations are pivotal in molecular zoology, shaping functions and influencing genetic diversity and evolution. Here we study three such genetic variants of a mechano-responsive protein, cadherin-23, that uphold the structural integrity of the protein, but showcase distinct genotypes and phenotypes. The variants exhibit subtle differences in transient intra-domain interactions, which in turn affect the anti-correlated motions among the constituent β-strands.

View Article and Find Full Text PDF

Chromosome-level de novo genome unveils the evolution of Gleditsia sinensis and thorns development.

Genomics

January 2025

State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, China. Electronic address:

Gleditsia sinensis Lam. (G. sinensis) as an important species within the Leguminosae family, has been utilized in Chinese medicine for centuries, and its thorns serve as a chief medicinal ingredient.

View Article and Find Full Text PDF

Chromosome-scale genomes of ecologically and economically important rabbitfish Siganus guttatus and Siganus oramin.

Genomics

January 2025

Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Sanya Tropical Fisheries Research Institute, Sanya 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China. Electronic address:

Siganus guttatus and Siganus oramin are two major species that are naturally distributed along the Eastern Pacific coast and possess considerable ecological and economic value. Here, we present the construction and comparative analysis of the chromosome-level genomes of these two Siganus species. Employing a hybrid assembly strategy, we partitioned and independently assembled the PacBio, Illumina and Hi-C reads of S.

View Article and Find Full Text PDF

Tracing human trait evolution through integrative genomics and temporal annotations.

Cell Genom

January 2025

Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia. Electronic address:

Understanding the evolution of human traits is a fundamental yet challenging question. In a recent Cell Genomics article, Kun et al. integrate large-scale genomic and phenotypic data, including deep-learning-derived imaging phenotypes, with temporal annotations to estimate the timing of evolutionary changes that led to differences in traits between modern humans and primates or hominin ancestors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!