Background: Paeonia ostii seeds were identified as novel sources of edible plant oil with a high proportion of α-linolenic acid, a type of n-3 fatty acid with many health benefits. Due to the unreliability of seed oil content and quality, it is necessary to discover the mechanism underlying lipid biosynthesis in Paeonia ostii seeds.

Objectives: This study aimed to identify the key genes involved in lipid biosynthesis in Paeonia ostii seeds by analyzing the relationship among the seed characteristics and the expression patterns of lipid genes in Paeonia ostii during seed development.

Methods: Preliminary research on Paeonia ostii seed development was carried out from 10 days after pollination until maturity, focusing on phenology, oil content and lipid profiles. In addition, we investigated the spatiotemporal expression of 36 lipid biosynthetic genes in Paeonia ostii by using quantitative real-time PCR.

Results: The results suggested that the development of Paeonia ostii seeds from pollination to maturity could be divided into three periods. The 36 lipid genes showed various spatiotemporal expression patterns and five gene groups with distinct temporal patterns during seed development were identified by clustering analysis of expression data. Furthermore, the relationships between gene expression and lipid/fatty acid accumulation and some candidate key lipid genes were discussed.

Conclusions: This study provided the global patterns of fatty acid and lipid biosynthesis-related gene expression, which are critical to understanding the molecular basis of lipid biosynthesis and identifying the lipid accumulation rate-limiting genes during seed development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13258-021-01102-2DOI Listing

Publication Analysis

Top Keywords

paeonia ostii
32
lipid biosynthesis
16
fatty acid
12
ostii seeds
12
lipid genes
12
seed development
12
lipid
11
genes involved
8
acid lipid
8
paeonia
8

Similar Publications

New Insight into the Related Candidate Genes and Molecular Regulatory Mechanisms of Waterlogging Tolerance in Tree Peony .

Plants (Basel)

November 2024

Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, No. 3888 Chenhua Rd., Songjiang District, Shanghai 201602, China.

Research on the waterlogging tolerance mechanisms of helps us to further understand these mechanisms in the root system and enhance its root bark and oil yields in southern China. In this study, root morphological identification, the statistics of nine physiological and biochemical indicators, and a comparative transcriptome analysis were used to investigate the waterlogging tolerance mechanism in this plant. As flooding continued, the roots' vigor dramatically declined from 6 to 168 h of waterlogging, the root number was extremely reduced by up to 95%, and the number of roots was not restored after 96 h of recovery.

View Article and Find Full Text PDF

The effects of selenite (0, 15, 30, 45 mg L) on physiological characteristics and medicinal components of were analyzed. The results showed that selenite application promoted the activity of superoxide dismutase and the contents of soluble sugar, proline, carotenoids, total flavonoids, and total polyphenols, and decreased the contents of reactive oxygen species, relative electrical conductivity, and malondialdehyde. In addition, selenite also increased chlorophyll content, improved electron transfer ability, PSI and PSII performance, and the coordination between PSI and PSII, which significantly improved photosynthetic capacity.

View Article and Find Full Text PDF

An Efficient In Vitro Regeneration Protocol and the Feature of Root Induction with Phloroglucinol in .

Plants (Basel)

November 2024

Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.

, a plant of substantial economic significance, continues to face constraints in achieving large-scale propagation. In vitro propagation offers a promising avenue for the production of disease-free plants and the genetic transformation of peonies to instill novel traits. However, significant challenges persist in tissue culture, particularly with regards to the reproduction coefficient of shoots and the rooting process.

View Article and Find Full Text PDF

As a plant-specific gene family, class III peroxidases (PODs) play an important role in plant growth, development, and stress responses. However, the POD gene family has not been systematically studied in . In this study, a total of 57 genes were identified in the genome.

View Article and Find Full Text PDF

is a marker gene for early somatic embryogenesis. We screened and functionally verified a SERK-interacting protein to gain insights into tree-peony somatic embryogenesis. Using PoSERK as bait, we identified PorbcL (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!