Metal-organic frameworks (MOFs) have captured substantial attention of an increasing number of scientists working in sensing analysis fields, due to their large surface area, high porosity, and tunable structure. Recently, MOFs as attractive fluorescence quenchers have been extensively investigated. Given their high quenching efficiency toward the fluorescence intensity of dyes-labeled specific biological recognition molecules, such as nucleic acids, MOFs have been widely developed to switch fluorescence biosensors with low background fluorescence signal. These strategies not only lead to specificity, simplicity, and low cost of biosensors, but also possess advantages such as ultrasensitive, rapid, and multiple detection of switch fluorescence methods. At present, researches of the analysis of switch fluorescence biosensors based on MOFs and nucleic acids mainly focus on sensing of different types of in vitro and intracellular analytes, indicating their increasing potential. In this review, we briefly introduce the principle of switch fluorescence biosensor and the mechanism of fluorescence quenching of MOFs, and mainly discuss and summarize the state-of-the-art advances of MOFs and nucleic acids-based switch fluorescence biosensors over the years 2013 to 2020. Most of them have been proposed to the in vitro detection of different types of analytes, showing their wide scope and applicability, such as deoxyribonucleic acid (DNAs), ribonucleic acid (RNAs), proteins, enzymes, antibiotics, and heavy metal ions. Besides, some of them have also been applied to the bioimaging of intracellular analytes, emerging their potential for biomedical applications, for example, cellular adenosine triphosphate (ATP) and subcellular glutathione (GSH). Finally, the remaining challenges in this sensing field and prospects for future research trends are addressed. Graphical abstract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-021-04827-9 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Huazhong University of Science and Technology, Department of Biomedical Engineering, CHINA.
Low-molecular-weight compounds of certain structural features may form coacervates through liquid-liquid phase separation (LLPS). These coacervates can enter mammalian cells and affect cellular physiology. Controlling the properties of the coacervates inside cells, however, is a challenge.
View Article and Find Full Text PDFTheranostics
January 2025
Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi, 710126, P. R. China.
The quick and accurate detection of colorectal cancer (CRC) is essential for improving the treatment efficacy and patient survival, which nevertheless remains challenging due to low specificity and sensitivity of current CRC diagnostic approaches. Therefore, providing a robust solution for real-time and accurate tumor delineation is highly desirable. We report a novel polyacrylic acid-mediated strategy to develop the endogenous hydrogen sulfide (HS)-activated NIR-II probe DCNP@PB for specific visualization of CRC and image-guided tumor surgery.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
Increased telomerase activity has been considered as a conspicuous sign of human cancers. The catalytic cores of telomerase involve a reverse transcriptase and the human telomerase RNA (hTR). However, current detection of telomerase is largely limited to its activity at the tissue and single-cell levels.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
Nuclear protein delivery underlies an array of biotechnological and therapeutic applications. While many variations of protein delivery methods have been described, it can still be difficult or inefficient to introduce exogenous proteins into plants. A major barrier to progress is the cell wall which is primarily composed of polysaccharides and thus only permeable to small molecules.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Military Medical Sciences Academy, Tianjin 300050, China.
() is a significant concern, as it can cause severe infections and hemolytic trauma. Given its prevalence in seawater and coastal seafood, it poses a substantial risk as a foodborne pathogen. Biosensor-based detection technology has been continuously evolving, and toehold switches have emerged as a promising area within it, especially in the detection of RNA viruses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!