AI Article Synopsis

  • The study investigates the toxic effects of Artemisia afra, a traditionally used medicinal plant, on the brain, heart, and suprarenal glands in mice.
  • The research involved administering varying doses of an aqueous extract to different groups of mice and assessing toxicity levels.
  • Results showed that A. afra is relatively safe, with no observed signs of toxicity or cellular injury in the examined organs.

Article Abstract

Background: The majority of population rely on traditional medicine as a source of healthcare. Artemisia afra is a plant traditionally used for its medicinal values, including treatment of malaria in many parts of the world. Currently, it is also attracting attention because of a claim that a related species, Artemisia annua, is a remedy for the COVD-19 pandemic. The aim of the present study was to investigate toxic effects of A. afra on brain, heart and suprarenal glands in mice aged 8-12 weeks and weighing 25-30g.

Methods: Leaves of A.afra were collected from Bale National Park, dried under shade, crushed into powder and soaked in distilled water to yield aqueous extract for oral administration. For acute toxicity study, seven treated and one control groups, with 3 female mice each, were used. They were given a single dose of 200mg/kg, 700mg/kg, 1200mg/kg, 2200mg/kg, 3200mg/kg, 4200mg/kg or 5000mg/kg b/wt of the extract. For the sub-acute toxicity study, two treated and one control groups, with 5 female and 5 male mice each, were used. They were daily treated with 600mg/kg or 1800mg/kg b/wt of extract.

Results: LD was found to be greater than 5000mg/kg indicating that the plant is relatively safe. In the sub-acute study, no signs of toxicity were observed in all treatment groups. On microscopic examination of the brain, heart and suprarenal glands no sign of cellular injury was observed.

Conclusion: The findings of this study suggest that the leaves extract of A. afra is relatively safe in mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047245PMC
http://dx.doi.org/10.4314/ejhs.v30i6.16DOI Listing

Publication Analysis

Top Keywords

brain heart
12
heart suprarenal
12
suprarenal glands
12
sub-acute toxicity
8
toxicity study
8
study treated
8
treated control
8
control groups
8
groups female
8
mice
5

Similar Publications

Heart transplantation remains the ultimate treatment strategy for neonates and children with medically refractory end-stage heart failure and utilization of donors after circulatory death (DCD) can expand th donor pool. We have previously shown that mitochondrial transplantation preserves myocardial function and viability in neonatal swine DCD hearts to levels similar to that observed in donation after brain death (DBD). Herein, we sought to investigate the transcriptomic and proteomic pathways implicated in these phenotypic changes using ex situ perfused swine hearts.

View Article and Find Full Text PDF

IUPHAR Themed Review: The Gut Microbiome in Schizophrenia.

Pharmacol Res

December 2024

UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia. Electronic address:

Gut microbial dysbiosis or altered gut microbial consortium, in schizophrenia suggests a pathogenic role through the gut-brain axis, influencing neuroinflammatory and neurotransmitter pathways critical to psychotic, affective, and cognitive symptoms. Paradoxically, conventional psychotropic interventions may exacerbate this dysbiosis, with antipsychotics, particularly olanzapine, demonstrating profound effects on microbial architecture through disruption of bacterial phyla ratios, diminished taxonomic diversity, and attenuated short-chain fatty acid synthesis. To address these challenges, novel therapeutic strategies targeting the gut microbiome, encompassing probiotic supplementation, prebiotic compounds, faecal microbiota transplantation, and rationalised co-pharmacotherapy, show promise in attenuating antipsychotic-induced metabolic disruptions while enhancing therapeutic efficacy.

View Article and Find Full Text PDF

Objectives: To report the results of an international patient-reported survey that adds to the growing body of evidence surrounding the role of surgery in the management of a subset of patients with non-hydrocephalic symptomatic pineal cyst.

Design: An international web-based survey of health outcomes in patients with nhSPC.

Subjects: All survey participants who self-reported a diagnosis of symptomatic pineal cyst without hydrocephalus after radiological imaging.

View Article and Find Full Text PDF

No FDA-approved medications for methamphetamine (MA) use disorder (MUD) are available. Suvorexant (SUVO), a dual orexin receptor antagonist that is FDA approved for insomnia treatment, reduces MA self-administration and MA-induced reinstatement responding in preclinical studies. SUVO may also reduce MA use by targeting substance use risk factors, including insomnia, stress, cue reactivity, and craving.

View Article and Find Full Text PDF

Ca signaling in vascular smooth muscle and endothelial cells in blood vessel remodeling: a review.

Inflamm Regen

December 2024

Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.

Vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) act together to regulate blood pressure and systemic blood flow by appropriately adjusting blood vessel diameter in response to biochemical or biomechanical stimuli. Ion channels that are expressed in these cells regulate membrane potential and cytosolic Ca concentration ([Ca]) in response to such stimuli. The subsets of these ion channels involved in Ca signaling often form molecular complexes with intracellular molecules via scaffolding proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!