The search for new two-dimensional monolayers with diverse electronic properties has attracted growing interest in recent years. Here, we present an approach to construct MAZ monolayers with a septuple-atomic-layer structure, that is, intercalating a MoS-type monolayer MZ into an InSe-type monolayer AZ. We illustrate this unique strategy by means of first-principles calculations, which not only reproduce the structures of MoSiN and MnBiTe that were already experimentally synthesized, but also predict 72 compounds that are thermodynamically and dynamically stable. Such an intercalated architecture significantly reconstructs the band structures of the constituents MZ and AZ, leading to diverse electronic properties for MAZ, which can be classified according to the total number of valence electrons. The systems with 32 and 34 valence electrons are mostly semiconductors. Whereas, those with 33 valence electrons can be nonmagnetic metals or ferromagnetic semiconductors. In particular, we find that, among the predicted compounds, (Ca,Sr)GaTe are topologically nontrivial by both the standard density functional theory and hybrid functional calculations. While VSiP is a ferromagnetic semiconductor and TaSiN is a type-I Ising superconductor. Moreover, WSiP is a direct gap semiconductor with peculiar spin-valley properties, which are robust against interlayer interactions. Our study thus provides an effective way of designing septuple-atomic-layer MAZ with unusual electronic properties to draw immediate experimental interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8060390PMC
http://dx.doi.org/10.1038/s41467-021-22324-8DOI Listing

Publication Analysis

Top Keywords

electronic properties
12
valence electrons
12
intercalated architecture
8
diverse electronic
8
properties
5
maz
4
architecture maz
4
maz family
4
family layered
4
layered van
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!