A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Direct validation of dune instability theory. | LitMetric

Direct validation of dune instability theory.

Proc Natl Acad Sci U S A

Laboratoire Matière et Système Complexes, Université de Paris, CNRS, 75205 Paris Cedex 13, France.

Published: April 2021

Modern dune fields are valuable sources of information for the large-scale analysis of terrestrial and planetary environments and atmospheres, but their study relies on understanding the small-scale dynamics that constantly generate new dunes and reshape older ones. Here, we designed a landscape-scale experiment at the edge of the Gobi desert, China, to quantify the development of incipient dunes under the natural action of winds. High-resolution topographic data documenting 42 mo of bedform dynamics are examined to provide a spectral analysis of dune pattern formation. We identified two successive phases in the process of dune growth, from the initial flat sand bed to a meter-high periodic pattern. We focus on the initial phase, when the linear regime of dune instability applies, and measure the growth rate of dunes of different wavelengths. We identify the existence of a maximum growth rate, which readily explains the mechanism by which dunes select their size, leading to the prevalence of a 15-m wavelength pattern. We quantitatively compare our experimental results with the prediction of the dune instability theory using transport and flow parameters independently measured in the field. The remarkable agreement between theory and observations demonstrates that the linear regime of dune growth is permanently expressed on low-amplitude bed topography, before larger regular patterns and slip faces eventually emerge. Our experiment underpins existing theoretical models for the early development of eolian dunes, which can now be used to provide reliable insights into atmospheric and surface processes on Earth and other planetary bodies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092407PMC
http://dx.doi.org/10.1073/pnas.2024105118DOI Listing

Publication Analysis

Top Keywords

dune instability
12
instability theory
8
dune growth
8
linear regime
8
regime dune
8
growth rate
8
dune
7
dunes
5
direct validation
4
validation dune
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!