Cardiovascular disease (CVD) is the leading global cause of death, and treatments that further reduce CV risk remain an unmet medical need. Epidemiological studies have consistently identified low high-density lipoprotein cholesterol (HDL-C) as an independent risk factor for CVD, making HDL elevation a potential clinical target for improved CVD resolution. Endothelial lipase (EL) is a circulating enzyme that regulates HDL turnover by hydrolyzing HDL phospholipids and driving HDL particle clearance. Using MEDI5884, a first-in-class, EL-neutralizing, monoclonal antibody, we tested the hypothesis that pharmacological inhibition of EL would increase HDL-C by enhancing HDL stability. In nonhuman primates, MEDI5884 treatment resulted in lasting, dose-dependent elevations in HDL-C and circulating phospholipids, confirming the mechanism of EL action. We then showed that a favorable lipoprotein profile of elevated HDL-C and reduced low-density lipoprotein cholesterol (LDL-C) could be achieved by combining MEDI5884 with a PCSK9 inhibitor. Last, when tested in healthy human volunteers, MEDI5884 not only raised HDL-C but also increased HDL particle numbers and average HDL size while enhancing HDL functionality, reinforcing EL neutralization as a viable clinical approach aimed at reducing CV risk.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.abb0602DOI Listing

Publication Analysis

Top Keywords

endothelial lipase
8
monoclonal antibody
8
nonhuman primates
8
lipoprotein cholesterol
8
hdl
8
hdl particle
8
enhancing hdl
8
medi5884
5
hdl-c
5
blocking endothelial
4

Similar Publications

The effect of increased triglycerides (TGs) as an independent factor in atherosclerosis development has been contentious, in part, because severe hypertriglyceridemia associates with low levels of low-density lipoprotein cholesterol (LDL-C). To test whether hyperchylomicronemia, in the absence of markedly reduced LDL-C levels, contributes to atherosclerosis, we created mice with induced whole-body lipoprotein lipase (LpL) deficiency combined with LDL receptor (LDLR) deficiency. On an atherogenic Western-type diet (WD), male and female mice with induced global LpL deficiency (i ) and LDLR knockdown ( ) developed hypertriglyceridemia and elevated cholesterol levels; all the increased cholesterol was in chylomicrons or large VLDL.

View Article and Find Full Text PDF
Article Synopsis
  • * The study found that cold-resistant substances in the larvae vary by month; lipid levels peak in December and January, while the lowest water content occurs in January.
  • * Silencing two specific genes, Eol1 and Epl1, led to a significant drop in lipid content and larval survival, demonstrating the importance of lipids in helping these larvae withstand cold conditions.
View Article and Find Full Text PDF

Proteome of pericytes from retinal vasculature of diabetic donor eyes.

Exp Eye Res

November 2024

Department of Biomedical Sciences, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India. Electronic address:

Retinal pericytes (PCs) are contractile microvascular smooth muscle cells that wrap around the endothelial cells (ECs) maintaining intact retinal vasculature (RV) with a 1:1 ratio. Microvascular complications like diabetic retinopathy (DR) due to chronic diabetes causes apoptotic loss of PCs followed by diminished vessel stability, EC apoptosis, and ischemia, leading to retinal angiogenesis, and eventually severe vision loss. This study aimed to analyze the proteins in PCs isolated from the RV of diabetic human donor eyes and compare them with remaining mixed population (MP) of retinal vascular cells.

View Article and Find Full Text PDF

Purpose Of Review: Dyslipidemia is a casual risk factor for atherosclerotic cardiovascular disease (ASCVD). There is an unmet need for more effective treatments for patients with dyslipidemias. Angiopoietin-like protein 3 (ANGPTL3) and ANGPTL8 play key roles in triglyceride trafficking and energy balance in humans.

View Article and Find Full Text PDF

Bis(monoacylglycero)phosphate (BMP) is a major phospholipid constituent of intralumenal membranes in late endosomes/lysosomes, where it regulates the degradation and sorting of lipid cargo. Recent observations suggest that the Batten disease-associated protein CLN5 functions as lysosomal BMP synthase. Here, we show that transacylation reactions catalyzed by cytosolic and secreted enzymes enhance BMP synthesis independently of CLN5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!