Tax Induces the Recruitment of NF-κB to Unintegrated HIV-1 DNA To Rescue Viral Gene Expression and Replication.

J Virol

Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA.

Published: June 2021

AI Article Synopsis

  • The integration of HIV-1 proviral DNA into the host's genome is not necessary in T cells expressing the HTLV-1 Tax protein, which activates NF-κB, leading to enhanced transcription from unintegrated HIV-1 DNA.
  • Tax expression activates transcription by promoting positive epigenetic modifications and attracting NF-κB to HIV-1's LTR enhancer, making it crucial for reversing repression of unintegrated viral DNA.
  • Despite the potential of integrase-deficient HIV-1 vectors in gene therapy due to low risk of insertional mutagenesis, they often yield low levels of gene expression, indicating a need for improved expression methods.

Article Abstract

We previously reported that the normally essential step of integration of the HIV-1 proviral DNA intermediate into the host cell genome becomes dispensable in T cells that express the human T cell leukemia virus 1 (HTLV-1) Tax protein, a known activator of cellular NF-κB. The rescue of integrase (IN)-deficient HIV-1 replication by Tax results from the strong activation of transcription from the long terminal repeat (LTR) promoter on episomal HIV-1 DNA, an effect that is closely correlated with the recruitment of activating epigenetic marks, such as H3Ac, and depletion of repressive epigenetic marks, such as H3K9me3, from chromatinized unintegrated proviruses. In addition, activation of transcription from unintegrated HIV-1 DNA coincides with the recruitment of NF-κB to the two NF-κB binding sites found in the HIV-1 LTR enhancer. Here, we report that the recruitment of NF-κB to unintegrated viral DNA precedes, and is a prerequisite for, Tax-induced changes in epigenetic marks, so that an IN HIV-1 mutant lacking both LTR NF-κB sites is entirely nonresponsive to Tax and fails to undergo the epigenetic changes listed above. Interestingly, we found that induction of Tax expression at 24 h postinfection, when unintegrated HIV-1 DNA is already fully repressed by inhibitory chromatin modifications, is able to effectively reverse the epigenetic silencing of that DNA and rescue viral gene expression. Finally, we report that heterologous promoters introduced into IN-deficient HIV-1-based vectors are transcriptionally active even in the absence of Tax and do not increase their activity when the HIV-1 promoter and enhancer, located in the LTR U3 region, are deleted, as has been recently proposed. Integrase-deficient expression vectors based on HIV-1 are becoming increasingly popular as tools for gene therapy due to their inability to cause insertional mutagenesis. However, many IN lentiviral vectors are able to achieve only low levels of gene expression, and methods to increase this low level have not been extensively explored. Here, we analyzed how the HTLV-1 Tax protein is able to rescue the replication of IN HIV-1 in T cells, and we describe IN lentiviral vectors, lacking any inserted origin of replication, that are able to express a heterologous gene effectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315925PMC
http://dx.doi.org/10.1128/JVI.00285-21DOI Listing

Publication Analysis

Top Keywords

hiv-1 dna
16
recruitment nf-κb
12
unintegrated hiv-1
12
gene expression
12
epigenetic marks
12
hiv-1
11
nf-κb unintegrated
8
dna rescue
8
rescue viral
8
viral gene
8

Similar Publications

[Donor DNA Modification with Cas9 Targeting Sites Improves the Efficiency of MTC34 Knock-in into the CXCR4 Locus].

Mol Biol (Mosk)

December 2024

Center of Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia.

To successfully apply the genome editing technology using the CRISPR/Cas9 system in the clinic, it is necessary to achieve a high efficiency of knock-in, which is insertion of a genetic construct into a given locus of the target cell genome. One of the approaches to increase the efficiency of knock-in is to modify donor DNA with the same Cas9 targeting sites (CTS) that are used to induce double-strand breaks (DSBs) in the cell genome (the double-cut donor method). Another approach is based on introducing truncated CTS (tCTS), including a PAM site and 16 proximal nucleotides, into the donor DNA.

View Article and Find Full Text PDF

[Methods to Increase the Efficiency of Knock-in of a Construct Encoding the HIV-1 Fusion Inhibitor, MT-C34 Peptide, into the CXCR4 Locus in the CEM/R5 T Cell Line].

Mol Biol (Mosk)

December 2024

Center of Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia.

The low knock-in efficiency, especially in primary human cells, limits the use of the genome editing technology for therapeutic purposes, rendering it important to develop approaches for increasing the knock-in levels. In this work, the efficiencies of several approaches were studied using a model of knock-in of a construct coding for the peptide HIV fusion inhibitor MT-C34 into the human CXCR4 locus in the CEM/R5 T cell line. First, donor DNA modification was evaluated as a means to improve the efficiency of plasmid transport into the nucleus.

View Article and Find Full Text PDF

Long Noncoding RNA LINC02453 Inhibits HIV-1 Replication by Binding With SEC13 to Regulate the Viral Productive Cycle.

J Med Virol

December 2024

Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.

Emerging evidence underscores the pivotal role of long noncoding RNAs (lncRNAs) as crucial regulators within the HIV life cycle. However, the precise functions and detailed mechanisms by which lncRNAs operate in HIV-1 highly exposed but persistently seronegative (HESN) individuals remain currently unknown. Through RNA sequencing analysis of the HESN individual and the matched control, we identified potential lncRNAs.

View Article and Find Full Text PDF

Tannic acid reactivates HIV-1 latency by mediating CBX4 degradation.

J Virol

December 2024

Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.

HIV-1 can integrate viral DNA into host cell chromosomes and establish a long-term stable latent viral reservoir, a major obstacle in curing HIV-1 infection. The reactivation of latent proviruses with latency-reversing agents (LRAs) is a prerequisite for the eradication of viral reservoirs. Previous reports have shown that tannic acid (TA) exerts several biological functions, including antioxidant and antitumor activities.

View Article and Find Full Text PDF

Acquired immunodeficiency syndrome (AIDS) poses a significant threat to life. Antiretroviral therapy is employed to diminish the replication of the human immunodeficiency virus (HIV), extending life expectancy and improving the quality of patients' lives. These HIV-1 integrase inhibitors form robust covalent interactions with Mg ions, contributing to their tight binding, thereby inhibiting the integration of viral DNA into the CD4 cell DNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!